Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import pandas as pd | |
| import datetime | |
| import numpy as np | |
| import datetime | |
| import all_model | |
| def show_information(): | |
| # Show Information about the selected Stock | |
| st.header('🤫Did you know💡') | |
| st.caption("Analyzing data from 2015 to 2021") | |
| st.text("1) There is a 60% chance of gap up opening in any random trade in Reliance 😮 ") | |
| st.text("2) 1% of the gap up is more than Rs:15.00 i.e more quantity == more profit😇") | |
| st.text("3) Median, Q3 or 75th percentile have increased from 2015(1.8) to 2021(11.55)💰") | |
| def select_date(): | |
| # Select the date for Prediction | |
| selected_date = st.date_input( | |
| "Which date you want to check", | |
| min_value= datetime.date(2022, 3, 1), | |
| max_value = datetime.date(2022, 3, 8), | |
| value = datetime.date(2022, 3, 7)) | |
| st.write('Your selected date is:', selected_date) | |
| return selected_date | |
| # @st.cache | |
| # def prepare_data_for_selected_date(): | |
| # df = pd.read_csv("dataset/reliance_30min.csv") | |
| # df = helper.format_date(df) | |
| # df = helper.replace_vol(df) | |
| # df = helper.feature_main(df) | |
| # df.to_csv('dataset/processed_reliance30m.csv') | |
| # return df | |
| def freature_data(date): | |
| # st.dataframe(df.loc[str(date)]) | |
| df = pd.read_csv("processed_reliance30m.csv",parse_dates=['Datetime']).set_index('Datetime') | |
| df = df.loc[str(date)] | |
| df = df.drop(columns=['date'],axis=1) | |
| return df | |
| def show_prediction_result(prepared_data): | |
| model = all_model.load_model() | |
| result = all_model.prediction(model,prepared_data) | |
| return result | |
| def main(): | |
| st.title('PROFIT IN THE MORNING!') | |
| option = st.selectbox( | |
| 'Which stock would you like to analyze?', | |
| ('None','Reliance', 'Airtel', 'State Bank Of India')) | |
| st.write('You selected:', option) | |
| if option=="Reliance": | |
| data_link = ("C:/Users/Rajdeep Borgohain.000/Desktop/reliance_30min.csv") | |
| dateSelect = False | |
| # About Reliance Stock | |
| show_information() | |
| selected_date = select_date() | |
| # prepared_data = prepare_data_for_selected_date() | |
| prepared_data = freature_data(selected_date) | |
| score = show_prediction_result(prepared_data) | |
| selected_date+=datetime.timedelta(days=1) | |
| if score == 'nan': | |
| text = f'No data avaliable for the selected date {selected_date}' | |
| st.warning(text) | |
| elif score >= 0.5: | |
| score = np.round(score,4)*100 | |
| text = f'The chances of Gap up on: {selected_date} is {score}%' | |
| st.success(text) | |
| elif score < 0.5: | |
| text = f'The chances of Gap up on: {selected_date} is {score}' | |
| st.error(text) | |
| else: | |
| st.text('Data Not Avaliable!') | |
| if __name__ == "__main__": | |
| main() |