Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,154 +0,0 @@
|
|
| 1 |
-
import subprocess
|
| 2 |
-
|
| 3 |
-
# Install the required packages
|
| 4 |
-
subprocess.check_call(["pip", "install", "-U", "git+https://github.com/huggingface/transformers.git"])
|
| 5 |
-
subprocess.check_call(["pip", "install", "-U", "git+https://github.com/huggingface/accelerate.git"])
|
| 6 |
-
subprocess.check_call(["pip", "install", "datasets"])
|
| 7 |
-
subprocess.check_call(["pip", "install", "evaluate"])
|
| 8 |
-
subprocess.check_call(["pip", "install", "scikit-learn"])
|
| 9 |
-
subprocess.check_call(["pip", "install", "torchvision"])
|
| 10 |
-
|
| 11 |
-
model_checkpoint = "microsoft/resnet-50"
|
| 12 |
-
batch_size = 128
|
| 13 |
-
|
| 14 |
-
from datasets import load_dataset
|
| 15 |
-
from evaluate import load
|
| 16 |
-
|
| 17 |
-
metric = load("accuracy")
|
| 18 |
-
|
| 19 |
-
# Load the dataset directly from Hugging Face
|
| 20 |
-
dataset = load_dataset("DamarJati/Face-Mask-Detection")
|
| 21 |
-
labels = dataset["train"].features["label"].names
|
| 22 |
-
label2id, id2label = dict(), dict()
|
| 23 |
-
for i, label in enumerate(labels):
|
| 24 |
-
label2id[label] = i
|
| 25 |
-
id2label[i] = label
|
| 26 |
-
|
| 27 |
-
from transformers import AutoImageProcessor
|
| 28 |
-
image_processor = AutoImageProcessor.from_pretrained(model_checkpoint)
|
| 29 |
-
image_processor
|
| 30 |
-
|
| 31 |
-
from torchvision.transforms import (
|
| 32 |
-
CenterCrop,
|
| 33 |
-
Compose,
|
| 34 |
-
Normalize,
|
| 35 |
-
RandomHorizontalFlip,
|
| 36 |
-
RandomResizedCrop,
|
| 37 |
-
Resize,
|
| 38 |
-
ToTensor,
|
| 39 |
-
ColorJitter,
|
| 40 |
-
RandomRotation
|
| 41 |
-
)
|
| 42 |
-
|
| 43 |
-
normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
|
| 44 |
-
|
| 45 |
-
# Check if size is a dictionary with height and width keys
|
| 46 |
-
if isinstance(image_processor.size, dict) and "height" in image_processor.size and "width" in image_processor.size:
|
| 47 |
-
size = (image_processor.size["height"], image_processor.size["width"])
|
| 48 |
-
else:
|
| 49 |
-
size = (224, 224) # Default size if not specified
|
| 50 |
-
|
| 51 |
-
train_transforms = Compose(
|
| 52 |
-
[
|
| 53 |
-
RandomResizedCrop(size),
|
| 54 |
-
RandomHorizontalFlip(),
|
| 55 |
-
RandomRotation(degrees=15),
|
| 56 |
-
ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),
|
| 57 |
-
ToTensor(),
|
| 58 |
-
normalize,
|
| 59 |
-
]
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
val_transforms = Compose(
|
| 63 |
-
[
|
| 64 |
-
Resize(size),
|
| 65 |
-
CenterCrop(size),
|
| 66 |
-
RandomRotation(degrees=15),
|
| 67 |
-
ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),
|
| 68 |
-
ToTensor(),
|
| 69 |
-
normalize,
|
| 70 |
-
]
|
| 71 |
-
)
|
| 72 |
-
|
| 73 |
-
def preprocess_train(example_batch):
|
| 74 |
-
example_batch["pixel_values"] = [
|
| 75 |
-
train_transforms(image.convert("RGB")) for image in example_batch["image"]
|
| 76 |
-
]
|
| 77 |
-
return example_batch
|
| 78 |
-
|
| 79 |
-
def preprocess_val(example_batch):
|
| 80 |
-
example_batch["pixel_values"] = [val_transforms(image.convert("RGB")) for image in example_batch["image"]]
|
| 81 |
-
return example_batch
|
| 82 |
-
|
| 83 |
-
splits = dataset["train"].train_test_split(test_size=0.3)
|
| 84 |
-
train_ds = splits['train']
|
| 85 |
-
val_ds = splits['test']
|
| 86 |
-
|
| 87 |
-
train_ds.set_transform(preprocess_train)
|
| 88 |
-
val_ds.set_transform(preprocess_val)
|
| 89 |
-
|
| 90 |
-
from transformers import AutoModelForImageClassification, TrainingArguments, Trainer
|
| 91 |
-
|
| 92 |
-
model = AutoModelForImageClassification.from_pretrained(model_checkpoint,
|
| 93 |
-
label2id=label2id,
|
| 94 |
-
id2label=id2label,
|
| 95 |
-
ignore_mismatched_sizes = True)
|
| 96 |
-
|
| 97 |
-
model_name = model_checkpoint.split("/")[-1]
|
| 98 |
-
|
| 99 |
-
args = TrainingArguments(
|
| 100 |
-
f"{model_name}-finetuned",
|
| 101 |
-
remove_unused_columns=False,
|
| 102 |
-
evaluation_strategy = "epoch",
|
| 103 |
-
save_strategy = "epoch",
|
| 104 |
-
save_total_limit = 5,
|
| 105 |
-
learning_rate=1e-3,
|
| 106 |
-
per_device_train_batch_size=batch_size,
|
| 107 |
-
gradient_accumulation_steps=2,
|
| 108 |
-
per_device_eval_batch_size=batch_size,
|
| 109 |
-
num_train_epochs=2,
|
| 110 |
-
warmup_ratio=0.1,
|
| 111 |
-
weight_decay=0.01,
|
| 112 |
-
lr_scheduler_type="cosine",
|
| 113 |
-
logging_steps=10,
|
| 114 |
-
load_best_model_at_end=True,
|
| 115 |
-
metric_for_best_model="accuracy",)
|
| 116 |
-
|
| 117 |
-
import numpy as np
|
| 118 |
-
|
| 119 |
-
def compute_metrics(eval_pred):
|
| 120 |
-
"""Computes accuracy on a batch of predictions"""
|
| 121 |
-
predictions = np.argmax(eval_pred.predictions, axis=1)
|
| 122 |
-
return metric.compute(predictions=predictions, references=eval_pred.label_ids)
|
| 123 |
-
|
| 124 |
-
import torch
|
| 125 |
-
|
| 126 |
-
def collate_fn(examples):
|
| 127 |
-
pixel_values = torch.stack([example["pixel_values"] for example in examples])
|
| 128 |
-
labels = torch.tensor([example["label"] for example in examples])
|
| 129 |
-
return {"pixel_values": pixel_values, "labels": labels}
|
| 130 |
-
|
| 131 |
-
trainer = Trainer(model,
|
| 132 |
-
args,
|
| 133 |
-
train_dataset=train_ds,
|
| 134 |
-
eval_dataset=val_ds,
|
| 135 |
-
tokenizer=image_processor,
|
| 136 |
-
compute_metrics=compute_metrics,
|
| 137 |
-
data_collator=collate_fn,)
|
| 138 |
-
|
| 139 |
-
train_results = trainer.train()
|
| 140 |
-
# Save model
|
| 141 |
-
trainer.save_model()
|
| 142 |
-
trainer.log_metrics("train", train_results.metrics)
|
| 143 |
-
trainer.save_metrics("train", train_results.metrics)
|
| 144 |
-
trainer.save_state()
|
| 145 |
-
|
| 146 |
-
metrics = trainer.evaluate()
|
| 147 |
-
# Log and save metrics
|
| 148 |
-
trainer.log_metrics("eval", metrics)
|
| 149 |
-
trainer.save_metrics("eval", metrics)
|
| 150 |
-
|
| 151 |
-
# Print evaluation metrics
|
| 152 |
-
print("Evaluation Metrics:")
|
| 153 |
-
for key, value in metrics.items():
|
| 154 |
-
print(f"{key}: {value}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|