Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,6 +11,9 @@ import numpy as np
|
|
| 11 |
from PIL import Image
|
| 12 |
from transformers import AutoProcessor, VisionEncoderDecoderModel, Gemma3nForConditionalGeneration, pipeline
|
| 13 |
import torch
|
|
|
|
|
|
|
|
|
|
| 14 |
import os
|
| 15 |
import tempfile
|
| 16 |
import uuid
|
|
@@ -312,6 +315,15 @@ except Exception as e:
|
|
| 312 |
dolphin_model = None
|
| 313 |
model_status = f"β Model failed to load: {str(e)}"
|
| 314 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
# Initialize chatbot model
|
| 316 |
try:
|
| 317 |
import os
|
|
@@ -350,12 +362,57 @@ except Exception as e:
|
|
| 350 |
# Global state for managing tabs
|
| 351 |
processed_markdown = ""
|
| 352 |
show_results_tab = False
|
|
|
|
|
|
|
|
|
|
| 353 |
# chatbot_model is initialized above
|
| 354 |
|
| 355 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
def process_uploaded_pdf(pdf_file, progress=gr.Progress()):
|
| 357 |
"""Main processing function for uploaded PDF"""
|
| 358 |
-
global processed_markdown, show_results_tab
|
| 359 |
|
| 360 |
if dolphin_model is None:
|
| 361 |
return "β Model not loaded", gr.Tabs(visible=False)
|
|
@@ -368,6 +425,13 @@ def process_uploaded_pdf(pdf_file, progress=gr.Progress()):
|
|
| 368 |
|
| 369 |
if status == "processing_complete":
|
| 370 |
processed_markdown = combined_markdown
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
show_results_tab = True
|
| 372 |
return "β
PDF processed successfully! Check the 'Document' tab above.", gr.Tabs(visible=True)
|
| 373 |
else:
|
|
@@ -446,11 +510,13 @@ with gr.Blocks(
|
|
| 446 |
# Home Tab
|
| 447 |
with gr.TabItem("π Home", id="home"):
|
| 448 |
chatbot_status = "β
Chatbot ready" if chatbot_model else "β Chatbot not loaded"
|
|
|
|
| 449 |
gr.Markdown(
|
| 450 |
"# Scholar Express\n"
|
| 451 |
"### Upload a research paper to get a web-friendly version, an AI chatbot, and a podcast summary. Because of our reliance on Generative AI, some errors are inevitable.\n"
|
| 452 |
f"**PDF Processing:** {model_status}\n"
|
| 453 |
-
f"**Chatbot:** {chatbot_status}"
|
|
|
|
| 454 |
)
|
| 455 |
|
| 456 |
with gr.Column(elem_classes="upload-container"):
|
|
@@ -521,7 +587,7 @@ with gr.Blocks(
|
|
| 521 |
send_btn = gr.Button("Send", variant="primary", scale=1)
|
| 522 |
|
| 523 |
gr.Markdown(
|
| 524 |
-
"*Ask questions about your processed document. The AI
|
| 525 |
elem_id="chat-notice"
|
| 526 |
)
|
| 527 |
|
|
@@ -562,18 +628,23 @@ with gr.Blocks(
|
|
| 562 |
return history + [[message, "β Please process a PDF document first before asking questions."]]
|
| 563 |
|
| 564 |
try:
|
| 565 |
-
#
|
| 566 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 567 |
|
| 568 |
# Create chat messages
|
| 569 |
messages = [
|
| 570 |
{
|
| 571 |
"role": "system",
|
| 572 |
-
"content": [{"type": "text", "text": "You are a helpful assistant that answers questions about documents. Use the provided document content to answer questions accurately."}]
|
| 573 |
},
|
| 574 |
{
|
| 575 |
"role": "user",
|
| 576 |
-
"content": [{"type": "text", "text": f"{context}\n\nQuestion: {message}"}]
|
| 577 |
}
|
| 578 |
]
|
| 579 |
|
|
|
|
| 11 |
from PIL import Image
|
| 12 |
from transformers import AutoProcessor, VisionEncoderDecoderModel, Gemma3nForConditionalGeneration, pipeline
|
| 13 |
import torch
|
| 14 |
+
from sentence_transformers import SentenceTransformer
|
| 15 |
+
import numpy as np
|
| 16 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 17 |
import os
|
| 18 |
import tempfile
|
| 19 |
import uuid
|
|
|
|
| 315 |
dolphin_model = None
|
| 316 |
model_status = f"β Model failed to load: {str(e)}"
|
| 317 |
|
| 318 |
+
# Initialize embedding model for RAG
|
| 319 |
+
try:
|
| 320 |
+
print("Loading embedding model...")
|
| 321 |
+
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 322 |
+
print("β
Embedding model loaded successfully")
|
| 323 |
+
except Exception as e:
|
| 324 |
+
print(f"β Error loading embedding model: {e}")
|
| 325 |
+
embedding_model = None
|
| 326 |
+
|
| 327 |
# Initialize chatbot model
|
| 328 |
try:
|
| 329 |
import os
|
|
|
|
| 362 |
# Global state for managing tabs
|
| 363 |
processed_markdown = ""
|
| 364 |
show_results_tab = False
|
| 365 |
+
document_chunks = []
|
| 366 |
+
document_embeddings = None
|
| 367 |
+
embedding_model = None
|
| 368 |
# chatbot_model is initialized above
|
| 369 |
|
| 370 |
|
| 371 |
+
def chunk_document(text, chunk_size=500, overlap=50):
|
| 372 |
+
"""Split document into overlapping chunks for RAG"""
|
| 373 |
+
words = text.split()
|
| 374 |
+
chunks = []
|
| 375 |
+
|
| 376 |
+
for i in range(0, len(words), chunk_size - overlap):
|
| 377 |
+
chunk = ' '.join(words[i:i + chunk_size])
|
| 378 |
+
if chunk.strip():
|
| 379 |
+
chunks.append(chunk)
|
| 380 |
+
|
| 381 |
+
return chunks
|
| 382 |
+
|
| 383 |
+
def create_embeddings(chunks):
|
| 384 |
+
"""Create embeddings for document chunks"""
|
| 385 |
+
if embedding_model is None:
|
| 386 |
+
return None
|
| 387 |
+
|
| 388 |
+
try:
|
| 389 |
+
embeddings = embedding_model.encode(chunks)
|
| 390 |
+
return embeddings
|
| 391 |
+
except Exception as e:
|
| 392 |
+
print(f"Error creating embeddings: {e}")
|
| 393 |
+
return None
|
| 394 |
+
|
| 395 |
+
def retrieve_relevant_chunks(question, chunks, embeddings, top_k=3):
|
| 396 |
+
"""Retrieve most relevant chunks for a question"""
|
| 397 |
+
if embedding_model is None or embeddings is None:
|
| 398 |
+
return chunks[:3] # Fallback to first 3 chunks
|
| 399 |
+
|
| 400 |
+
try:
|
| 401 |
+
question_embedding = embedding_model.encode([question])
|
| 402 |
+
similarities = cosine_similarity(question_embedding, embeddings)[0]
|
| 403 |
+
|
| 404 |
+
# Get top-k most similar chunks
|
| 405 |
+
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
| 406 |
+
relevant_chunks = [chunks[i] for i in top_indices]
|
| 407 |
+
|
| 408 |
+
return relevant_chunks
|
| 409 |
+
except Exception as e:
|
| 410 |
+
print(f"Error retrieving chunks: {e}")
|
| 411 |
+
return chunks[:3] # Fallback
|
| 412 |
+
|
| 413 |
def process_uploaded_pdf(pdf_file, progress=gr.Progress()):
|
| 414 |
"""Main processing function for uploaded PDF"""
|
| 415 |
+
global processed_markdown, show_results_tab, document_chunks, document_embeddings
|
| 416 |
|
| 417 |
if dolphin_model is None:
|
| 418 |
return "β Model not loaded", gr.Tabs(visible=False)
|
|
|
|
| 425 |
|
| 426 |
if status == "processing_complete":
|
| 427 |
processed_markdown = combined_markdown
|
| 428 |
+
|
| 429 |
+
# Create chunks and embeddings for RAG
|
| 430 |
+
print("Creating document chunks for RAG...")
|
| 431 |
+
document_chunks = chunk_document(processed_markdown)
|
| 432 |
+
document_embeddings = create_embeddings(document_chunks)
|
| 433 |
+
print(f"Created {len(document_chunks)} chunks")
|
| 434 |
+
|
| 435 |
show_results_tab = True
|
| 436 |
return "β
PDF processed successfully! Check the 'Document' tab above.", gr.Tabs(visible=True)
|
| 437 |
else:
|
|
|
|
| 510 |
# Home Tab
|
| 511 |
with gr.TabItem("π Home", id="home"):
|
| 512 |
chatbot_status = "β
Chatbot ready" if chatbot_model else "β Chatbot not loaded"
|
| 513 |
+
embedding_status = "β
RAG ready" if embedding_model else "β RAG not loaded"
|
| 514 |
gr.Markdown(
|
| 515 |
"# Scholar Express\n"
|
| 516 |
"### Upload a research paper to get a web-friendly version, an AI chatbot, and a podcast summary. Because of our reliance on Generative AI, some errors are inevitable.\n"
|
| 517 |
f"**PDF Processing:** {model_status}\n"
|
| 518 |
+
f"**Chatbot:** {chatbot_status}\n"
|
| 519 |
+
f"**RAG System:** {embedding_status}"
|
| 520 |
)
|
| 521 |
|
| 522 |
with gr.Column(elem_classes="upload-container"):
|
|
|
|
| 587 |
send_btn = gr.Button("Send", variant="primary", scale=1)
|
| 588 |
|
| 589 |
gr.Markdown(
|
| 590 |
+
"*Ask questions about your processed document. The AI uses RAG (Retrieval-Augmented Generation) to find relevant sections and provide accurate answers.*",
|
| 591 |
elem_id="chat-notice"
|
| 592 |
)
|
| 593 |
|
|
|
|
| 628 |
return history + [[message, "β Please process a PDF document first before asking questions."]]
|
| 629 |
|
| 630 |
try:
|
| 631 |
+
# Use RAG to get relevant chunks instead of full document
|
| 632 |
+
if document_chunks and len(document_chunks) > 0:
|
| 633 |
+
relevant_chunks = retrieve_relevant_chunks(message, document_chunks, document_embeddings)
|
| 634 |
+
context = "\n\n".join(relevant_chunks)
|
| 635 |
+
else:
|
| 636 |
+
# Fallback to truncated document if RAG fails
|
| 637 |
+
context = processed_markdown[:1500] + "..." if len(processed_markdown) > 1500 else processed_markdown
|
| 638 |
|
| 639 |
# Create chat messages
|
| 640 |
messages = [
|
| 641 |
{
|
| 642 |
"role": "system",
|
| 643 |
+
"content": [{"type": "text", "text": "You are a helpful assistant that answers questions about documents. Use the provided document content to answer questions accurately and concisely."}]
|
| 644 |
},
|
| 645 |
{
|
| 646 |
"role": "user",
|
| 647 |
+
"content": [{"type": "text", "text": f"Document content:\n{context}\n\nQuestion: {message}"}]
|
| 648 |
}
|
| 649 |
]
|
| 650 |
|