raksama19's picture
Update app.py
e9a814c verified
raw
history blame
21.3 kB
"""
DOLPHIN PDF Document AI - Final Version
Optimized for HuggingFace Spaces NVIDIA T4 Small deployment
"""
import gradio as gr
import json
import markdown
import cv2
import numpy as np
from PIL import Image
from transformers import AutoProcessor, VisionEncoderDecoderModel, Gemma3nForConditionalGeneration, pipeline
import torch
import os
import tempfile
import uuid
import base64
import io
from utils.utils import *
from utils.markdown_utils import MarkdownConverter
# Math extension is optional for enhanced math rendering
MATH_EXTENSION_AVAILABLE = False
try:
from mdx_math import MathExtension
MATH_EXTENSION_AVAILABLE = True
except ImportError:
pass
class DOLPHIN:
def __init__(self, model_id_or_path):
"""Initialize the Hugging Face model optimized for T4 Small"""
self.processor = AutoProcessor.from_pretrained(model_id_or_path)
self.model = VisionEncoderDecoderModel.from_pretrained(
model_id_or_path,
torch_dtype=torch.float16,
device_map="auto" if torch.cuda.is_available() else None
)
self.model.eval()
self.device = "cuda" if torch.cuda.is_available() else "cpu"
if not torch.cuda.is_available():
self.model = self.model.float()
self.tokenizer = self.processor.tokenizer
def chat(self, prompt, image):
"""Process an image or batch of images with the given prompt(s)"""
is_batch = isinstance(image, list)
if not is_batch:
images = [image]
prompts = [prompt]
else:
images = image
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
batch_inputs = self.processor(images, return_tensors="pt", padding=True)
batch_pixel_values = batch_inputs.pixel_values
if torch.cuda.is_available():
batch_pixel_values = batch_pixel_values.half().to(self.device)
else:
batch_pixel_values = batch_pixel_values.to(self.device)
prompts = [f"<s>{p} <Answer/>" for p in prompts]
batch_prompt_inputs = self.tokenizer(
prompts,
add_special_tokens=False,
return_tensors="pt"
)
batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device)
batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device)
with torch.no_grad():
outputs = self.model.generate(
pixel_values=batch_pixel_values,
decoder_input_ids=batch_prompt_ids,
decoder_attention_mask=batch_attention_mask,
min_length=1,
max_length=1024, # Reduced for T4 Small
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[self.tokenizer.unk_token_id]],
return_dict_in_generate=True,
do_sample=False,
num_beams=1,
repetition_penalty=1.1,
temperature=1.0
)
sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
results = []
for i, sequence in enumerate(sequences):
cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
results.append(cleaned)
if not is_batch:
return results[0]
return results
def convert_pdf_to_images_gradio(pdf_file):
"""Convert uploaded PDF file to list of PIL Images"""
try:
import pymupdf
if isinstance(pdf_file, str):
pdf_document = pymupdf.open(pdf_file)
else:
pdf_bytes = pdf_file.read()
pdf_document = pymupdf.open(stream=pdf_bytes, filetype="pdf")
images = []
for page_num in range(len(pdf_document)):
page = pdf_document[page_num]
mat = pymupdf.Matrix(2.0, 2.0)
pix = page.get_pixmap(matrix=mat)
img_data = pix.tobytes("png")
pil_image = Image.open(io.BytesIO(img_data)).convert("RGB")
images.append(pil_image)
pdf_document.close()
return images
except Exception as e:
raise Exception(f"Error converting PDF: {str(e)}")
def process_pdf_document(pdf_file, model, progress=gr.Progress()):
"""Process uploaded PDF file page by page"""
if pdf_file is None:
return "No PDF file uploaded", ""
try:
progress(0.1, desc="Converting PDF to images...")
images = convert_pdf_to_images_gradio(pdf_file)
if not images:
return "Failed to convert PDF to images", ""
all_results = []
for page_idx, pil_image in enumerate(images):
progress((page_idx + 1) / len(images) * 0.8 + 0.1,
desc=f"Processing page {page_idx + 1}/{len(images)}...")
layout_output = model.chat("Parse the reading order of this document.", pil_image)
padded_image, dims = prepare_image(pil_image)
recognition_results = process_elements_optimized(
layout_output,
padded_image,
dims,
model,
max_batch_size=2 # Smaller batch for T4 Small
)
try:
markdown_converter = MarkdownConverter()
markdown_content = markdown_converter.convert(recognition_results)
except:
markdown_content = generate_fallback_markdown(recognition_results)
page_result = {
"page_number": page_idx + 1,
"markdown": markdown_content
}
all_results.append(page_result)
progress(1.0, desc="Processing complete!")
combined_markdown = "\n\n---\n\n".join([
f"# Page {result['page_number']}\n\n{result['markdown']}"
for result in all_results
])
return combined_markdown, "processing_complete"
except Exception as e:
error_msg = f"Error processing PDF: {str(e)}"
return error_msg, "error"
def process_elements_optimized(layout_results, padded_image, dims, model, max_batch_size=2):
"""Optimized element processing for T4 Small"""
layout_results = parse_layout_string(layout_results)
text_elements = []
table_elements = []
figure_results = []
previous_box = None
reading_order = 0
for bbox, label in layout_results:
try:
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
bbox, padded_image, dims, previous_box
)
cropped = padded_image[y1:y2, x1:x2]
if cropped.size > 0 and cropped.shape[0] > 3 and cropped.shape[1] > 3:
if label == "fig":
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
pil_crop = crop_margin(pil_crop)
buffered = io.BytesIO()
pil_crop.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode()
data_uri = f"data:image/png;base64,{img_base64}"
figure_results.append({
"label": label,
"text": f"![Figure {reading_order}]({data_uri})",
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"reading_order": reading_order,
})
else:
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
element_info = {
"crop": pil_crop,
"label": label,
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"reading_order": reading_order,
}
if label == "tab":
table_elements.append(element_info)
else:
text_elements.append(element_info)
reading_order += 1
except Exception as e:
print(f"Error processing element {label}: {str(e)}")
continue
recognition_results = figure_results.copy()
if text_elements:
text_results = process_element_batch_optimized(
text_elements, model, "Read text in the image.", max_batch_size
)
recognition_results.extend(text_results)
if table_elements:
table_results = process_element_batch_optimized(
table_elements, model, "Parse the table in the image.", max_batch_size
)
recognition_results.extend(table_results)
recognition_results.sort(key=lambda x: x.get("reading_order", 0))
return recognition_results
def process_element_batch_optimized(elements, model, prompt, max_batch_size=2):
"""Process elements in small batches for T4 Small"""
results = []
batch_size = min(len(elements), max_batch_size)
for i in range(0, len(elements), batch_size):
batch_elements = elements[i:i+batch_size]
crops_list = [elem["crop"] for elem in batch_elements]
prompts_list = [prompt] * len(crops_list)
batch_results = model.chat(prompts_list, crops_list)
for j, result in enumerate(batch_results):
elem = batch_elements[j]
results.append({
"label": elem["label"],
"bbox": elem["bbox"],
"text": result.strip(),
"reading_order": elem["reading_order"],
})
del crops_list, batch_elements
if torch.cuda.is_available():
torch.cuda.empty_cache()
return results
def generate_fallback_markdown(recognition_results):
"""Generate basic markdown if converter fails"""
markdown_content = ""
for element in recognition_results:
if element["label"] == "tab":
markdown_content += f"\n\n{element['text']}\n\n"
elif element["label"] in ["para", "title", "sec", "sub_sec"]:
markdown_content += f"{element['text']}\n\n"
elif element["label"] == "fig":
markdown_content += f"{element['text']}\n\n"
return markdown_content
# Initialize model
model_path = "./hf_model"
if not os.path.exists(model_path):
model_path = "ByteDance/DOLPHIN"
try:
dolphin_model = DOLPHIN(model_path)
print(f"Model loaded successfully from {model_path}")
model_status = f"βœ… Model ready (Device: {dolphin_model.device})"
except Exception as e:
print(f"Error loading model: {e}")
dolphin_model = None
model_status = f"❌ Model failed to load: {str(e)}"
# Initialize chatbot model
try:
import os
# Get HuggingFace token from environment/secrets
hf_token = os.getenv('HF_TOKEN')
if hf_token:
os.environ['HF_TOKEN'] = hf_token
chatbot_model = Gemma3nForConditionalGeneration.from_pretrained(
"google/gemma-3n-e4b-it",
device_map="auto",
torch_dtype=torch.bfloat16,
use_auth_token=hf_token
).eval()
chatbot_processor = AutoProcessor.from_pretrained(
"google/gemma-3n-e4b-it",
use_auth_token=hf_token
)
print("Chatbot model loaded successfully")
except Exception as e:
print(f"Error loading chatbot model: {e}")
chatbot_model = None
chatbot_processor = None
# Global state for managing tabs
processed_markdown = ""
show_results_tab = False
chatbot_model = None
def process_uploaded_pdf(pdf_file, progress=gr.Progress()):
"""Main processing function for uploaded PDF"""
global processed_markdown, show_results_tab
if dolphin_model is None:
return "❌ Model not loaded", gr.Tabs(visible=False)
if pdf_file is None:
return "❌ No PDF uploaded", gr.Tabs(visible=False)
try:
combined_markdown, status = process_pdf_document(pdf_file, dolphin_model, progress)
if status == "processing_complete":
processed_markdown = combined_markdown
show_results_tab = True
return "βœ… PDF processed successfully! Check the 'Document' tab above.", gr.Tabs(visible=True)
else:
show_results_tab = False
return combined_markdown, gr.Tabs(visible=False)
except Exception as e:
show_results_tab = False
error_msg = f"❌ Error processing PDF: {str(e)}"
return error_msg, gr.Tabs(visible=False)
def get_processed_markdown():
"""Return the processed markdown content"""
global processed_markdown
return processed_markdown if processed_markdown else "No document processed yet."
def clear_all():
"""Clear all data and hide results tab"""
global processed_markdown, show_results_tab
processed_markdown = ""
show_results_tab = False
return None, "βœ… Ready to process your PDF", gr.Tabs(visible=False)
# Create Gradio interface
with gr.Blocks(
title="DOLPHIN PDF AI",
theme=gr.themes.Soft(),
css="""
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
* {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif !important;
}
.main-container {
max-width: 1000px;
margin: 0 auto;
}
.upload-container {
text-align: center;
padding: 40px 20px;
border: 2px dashed #e0e0e0;
border-radius: 15px;
margin: 20px 0;
}
.upload-button {
font-size: 18px !important;
padding: 15px 30px !important;
margin: 20px 0 !important;
font-weight: 600 !important;
}
.status-message {
text-align: center;
padding: 15px;
margin: 10px 0;
border-radius: 8px;
font-weight: 500;
}
.chatbot-container {
max-height: 600px;
}
h1, h2, h3 {
font-weight: 700 !important;
}
#progress-container {
margin: 10px 0;
min-height: 20px;
}
"""
) as demo:
with gr.Tabs() as main_tabs:
# Home Tab
with gr.TabItem("🏠 Home", id="home"):
gr.Markdown(
"# Scholar Express\n"
"### Upload a research paper to get a web-friendly version, an AI chatbot, and a podcast summary. Because of our reliance on Generative AI, some errors are inevitable.\n"
f"**Status:** {model_status}"
)
with gr.Column(elem_classes="upload-container"):
gr.Markdown("## πŸ“„ Upload Your PDF Document")
pdf_input = gr.File(
file_types=[".pdf"],
label="",
height=150,
elem_id="pdf_upload"
)
process_btn = gr.Button(
"πŸš€ Process PDF",
variant="primary",
size="lg",
elem_classes="upload-button"
)
clear_btn = gr.Button(
"πŸ—‘οΈ Clear",
variant="secondary"
)
# Dedicated progress space
progress_space = gr.HTML(
value="",
visible=False,
elem_id="progress-container"
)
# Status output (hidden during processing)
status_output = gr.Markdown(
"βœ… Ready to process your PDF",
elem_classes="status-message"
)
# Results Tab (initially hidden)
with gr.TabItem("πŸ“– Document", id="results", visible=False) as results_tab:
gr.Markdown("## Processed Document")
markdown_display = gr.Markdown(
value="",
latex_delimiters=[
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False}
],
height=700
)
# Chatbot Tab (initially hidden)
with gr.TabItem("πŸ’¬ Chat", id="chat", visible=False) as chat_tab:
gr.Markdown("## Ask Questions About Your Document")
chatbot = gr.Chatbot(
value=[],
height=500,
elem_classes="chatbot-container",
placeholder="Your conversation will appear here once you process a document..."
)
with gr.Row():
msg_input = gr.Textbox(
placeholder="Ask a question about the processed document...",
scale=4,
container=False
)
send_btn = gr.Button("Send", variant="primary", scale=1)
gr.Markdown(
"*Ask questions about your processed document. The AI will use the document content to provide accurate answers.*",
elem_id="chat-notice"
)
# Event handlers
process_btn.click(
fn=process_uploaded_pdf,
inputs=[pdf_input],
outputs=[status_output, results_tab],
show_progress=True
).then(
fn=get_processed_markdown,
outputs=[markdown_display]
).then(
fn=lambda: gr.TabItem(visible=True),
outputs=[chat_tab]
)
clear_btn.click(
fn=clear_all,
outputs=[pdf_input, status_output, results_tab]
).then(
fn=lambda: gr.HTML(visible=False),
outputs=[progress_space]
).then(
fn=lambda: gr.TabItem(visible=False),
outputs=[chat_tab]
)
# Chatbot functionality
def chatbot_response(message, history):
if not message.strip():
return history
if chatbot_model is None:
return history + [[message, "❌ Chatbot model not loaded. Please check your HuggingFace token."]]
if not processed_markdown:
return history + [[message, "❌ Please process a PDF document first before asking questions."]]
try:
# Create context with the processed document
context = f"Document content:\n{processed_markdown[:3000]}..." if len(processed_markdown) > 3000 else f"Document content:\n{processed_markdown}"
# Create chat messages
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are a helpful assistant that answers questions about documents. Use the provided document content to answer questions accurately."}]
},
{
"role": "user",
"content": [{"type": "text", "text": f"{context}\n\nQuestion: {message}"}]
}
]
# Process with the model
inputs = chatbot_processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(chatbot_model.device)
input_len = inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation = chatbot_model.generate(
**inputs,
max_new_tokens=300,
do_sample=False,
temperature=0.7,
pad_token_id=chatbot_processor.tokenizer.pad_token_id
)
generation = generation[0][input_len:]
response = chatbot_processor.decode(generation, skip_special_tokens=True)
return history + [[message, response]]
except Exception as e:
error_msg = f"❌ Error generating response: {str(e)}"
return history + [[message, error_msg]]
send_btn.click(
fn=chatbot_response,
inputs=[msg_input, chatbot],
outputs=[chatbot]
).then(
lambda: "",
outputs=[msg_input]
)
# Also allow Enter key to send message
msg_input.submit(
fn=chatbot_response,
inputs=[msg_input, chatbot],
outputs=[chatbot]
).then(
lambda: "",
outputs=[msg_input]
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
max_threads=1, # Single thread for T4 Small
inbrowser=False,
quiet=True
)