""" """ from typing import Any from typing import Callable from typing import ParamSpec import spaces import torch from torch.utils._pytree import tree_map_only from torchao.quantization import quantize_ from torchao.quantization import Float8DynamicActivationFloat8WeightConfig from torchao.quantization import Int8WeightOnlyConfig from optimization_utils import capture_component_call from optimization_utils import aoti_compile from optimization_utils import ZeroGPUCompiledModel from optimization_utils import drain_module_parameters P = ParamSpec('P') TRANSFORMER_NUM_FRAMES_DIM = torch.export.Dim('num_frames', min=3, max=21) TRANSFORMER_DYNAMIC_SHAPES = { 'hidden_states': { 2: TRANSFORMER_NUM_FRAMES_DIM, }, } INDUCTOR_CONFIGS = { 'conv_1x1_as_mm': True, 'epilogue_fusion': False, 'coordinate_descent_tuning': True, 'coordinate_descent_check_all_directions': True, 'max_autotune': True, 'triton.cudagraphs': True, } def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): @spaces.GPU(duration=1500) def compile_transformer(): # --- LoRA 1: lightning (loads into default transformer) --- pipeline.load_lora_weights( "Kijai/WanVideo_comfy", weight_name="Lightx2v/lightx2v_T2V_14B_cfg_step_distill_v2_lora_rank128_bf16.safetensors", adapter_name="lightning", ) # --- LoRA 2: lightning_2 (loads into transformer_2) --- kwargs_lora = {"load_into_transformer_2": True} pipeline.load_lora_weights( "deadman44/Wan2.2_T2i_T2v_LoRA", weight_name="lora_wan2.2_myjd_Low_v01.safetensors", adapter_name="lightning_2", **kwargs_lora, ) # --- LoRA 3: orbit_shot (the ostris repo you asked for) --- # Load into transformer_2 as well (set load_into_transformer_2 True if this adapter targets transformer_2) # pipeline.load_lora_weights( # "ostris/wan22_i2v_14b_orbit_shot_lora", # weight_name="wan22_14b_i2v_orbit_low_noise.safetensors", # adapter_name="orbit_shot", # **kwargs_lora, # ) # Register adapters and their relative weights # (adjust adapter_weights to taste; here each is weight 1.0) #pipeline.set_adapters(["lightning", "lightning_2", "orbit_shot"], adapter_weights=[1.0, 1.0, 1.0]) pipeline.set_adapters(["lightning", "lightning_2", "orbit_shot"], adapter_weights=[1., 1.]) # Fuse each adapter into the correct component with chosen lora_scale: # - lightning -> transformer (boosted by 3x in your original) # - lightning_2 -> transformer_2 # - orbit_shot -> transformer_2 (or transformer depending on the LoRA design) pipeline.fuse_lora(adapter_names=["lightning"], lora_scale=3.0, components=["transformer"]) pipeline.fuse_lora(adapter_names=["lightning_2"], lora_scale=1.0, components=["transformer_2"]) #pipeline.fuse_lora(adapter_names=["orbit_shot"], lora_scale=1.0, components=["transformer_2"]) # After fusing, you can unload LoRA weights to free memory (fused weights remain applied) pipeline.unload_lora_weights() # --- then continue with capture_component_call / export / compile logic as you already have --- with capture_component_call(pipeline, 'transformer') as call: pipeline(*args, **kwargs) # ... rest of your function unchanged ... quantize_(pipeline.text_encoder, Int8WeightOnlyConfig()) cl1, cl2, cp1, cp2 = compile_transformer() def combined_transformer_1(*args, **kwargs): hidden_states: torch.Tensor = kwargs['hidden_states'] if hidden_states.shape[-1] > hidden_states.shape[-2]: return cl1(*args, **kwargs) else: return cp1(*args, **kwargs) def combined_transformer_2(*args, **kwargs): hidden_states: torch.Tensor = kwargs['hidden_states'] if hidden_states.shape[-1] > hidden_states.shape[-2]: return cl2(*args, **kwargs) else: return cp2(*args, **kwargs) pipeline.transformer.forward = combined_transformer_1 drain_module_parameters(pipeline.transformer) pipeline.transformer_2.forward = combined_transformer_2 drain_module_parameters(pipeline.transformer_2)