Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,7 +5,7 @@ os.system('pip install --upgrade --pre --extra-index-url https://download.pytorc
|
|
| 5 |
# Actual demo code
|
| 6 |
import spaces
|
| 7 |
import torch
|
| 8 |
-
from diffusers
|
| 9 |
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
|
| 10 |
from diffusers.utils.export_utils import export_to_video
|
| 11 |
import gradio as gr
|
|
@@ -30,7 +30,7 @@ MAX_FRAMES_MODEL = 81
|
|
| 30 |
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
|
| 31 |
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)
|
| 32 |
|
| 33 |
-
|
| 34 |
pipe = WanPipeline.from_pretrained(MODEL_ID,
|
| 35 |
transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
|
| 36 |
subfolder='transformer',
|
|
@@ -42,6 +42,7 @@ pipe = WanPipeline.from_pretrained(MODEL_ID,
|
|
| 42 |
torch_dtype=torch.bfloat16,
|
| 43 |
device_map='cuda',
|
| 44 |
),
|
|
|
|
| 45 |
torch_dtype=torch.bfloat16,
|
| 46 |
).to('cuda')
|
| 47 |
|
|
@@ -80,7 +81,6 @@ for i in range(3):
|
|
| 80 |
torch.cuda.empty_cache()
|
| 81 |
|
| 82 |
optimize_pipeline_(pipe,
|
| 83 |
-
# image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
|
| 84 |
prompt='prompt',
|
| 85 |
height=LANDSCAPE_HEIGHT,
|
| 86 |
width=LANDSCAPE_WIDTH,
|
|
@@ -88,34 +88,11 @@ optimize_pipeline_(pipe,
|
|
| 88 |
)
|
| 89 |
|
| 90 |
|
| 91 |
-
default_prompt_i2v = "
|
| 92 |
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
|
| 93 |
|
| 94 |
|
| 95 |
-
def resize_image(image: Image.Image) -> Image.Image:
|
| 96 |
-
if image.height > image.width:
|
| 97 |
-
transposed = image.transpose(Image.Transpose.ROTATE_90)
|
| 98 |
-
resized = resize_image_landscape(transposed)
|
| 99 |
-
return resized.transpose(Image.Transpose.ROTATE_270)
|
| 100 |
-
return resize_image_landscape(image)
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
def resize_image_landscape(image: Image.Image) -> Image.Image:
|
| 104 |
-
target_aspect = LANDSCAPE_WIDTH / LANDSCAPE_HEIGHT
|
| 105 |
-
width, height = image.size
|
| 106 |
-
in_aspect = width / height
|
| 107 |
-
if in_aspect > target_aspect:
|
| 108 |
-
new_width = round(height * target_aspect)
|
| 109 |
-
left = (width - new_width) // 2
|
| 110 |
-
image = image.crop((left, 0, left + new_width, height))
|
| 111 |
-
else:
|
| 112 |
-
new_height = round(width / target_aspect)
|
| 113 |
-
top = (height - new_height) // 2
|
| 114 |
-
image = image.crop((0, top, width, top + new_height))
|
| 115 |
-
return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)
|
| 116 |
-
|
| 117 |
def get_duration(
|
| 118 |
-
input_image,
|
| 119 |
prompt,
|
| 120 |
negative_prompt,
|
| 121 |
duration_seconds,
|
|
@@ -130,13 +107,12 @@ def get_duration(
|
|
| 130 |
|
| 131 |
@spaces.GPU(duration=get_duration)
|
| 132 |
def generate_video(
|
| 133 |
-
input_image,
|
| 134 |
prompt,
|
| 135 |
negative_prompt=default_negative_prompt,
|
| 136 |
duration_seconds = MAX_DURATION,
|
| 137 |
guidance_scale = 1,
|
| 138 |
guidance_scale_2 = 3,
|
| 139 |
-
steps =
|
| 140 |
seed = 42,
|
| 141 |
randomize_seed = False,
|
| 142 |
progress=gr.Progress(track_tqdm=True),
|
|
@@ -149,7 +125,6 @@ def generate_video(
|
|
| 149 |
for fast generation in 6-8 steps.
|
| 150 |
|
| 151 |
Args:
|
| 152 |
-
input_image (PIL.Image): The input image to animate. Will be resized to target dimensions.
|
| 153 |
prompt (str): Text prompt describing the desired animation or motion.
|
| 154 |
negative_prompt (str, optional): Negative prompt to avoid unwanted elements.
|
| 155 |
Defaults to default_negative_prompt (contains unwanted visual artifacts).
|
|
@@ -182,15 +157,11 @@ def generate_video(
|
|
| 182 |
- The function uses GPU acceleration via the @spaces.GPU decorator
|
| 183 |
- Generation time varies based on steps and duration (see get_duration function)
|
| 184 |
"""
|
| 185 |
-
# if input_image is None:
|
| 186 |
-
# raise gr.Error("Please upload an input image.")
|
| 187 |
|
| 188 |
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
|
| 189 |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
| 190 |
-
# resized_image = resize_image(input_image)
|
| 191 |
|
| 192 |
output_frames_list = pipe(
|
| 193 |
-
#image=resized_image,
|
| 194 |
prompt=prompt,
|
| 195 |
negative_prompt=negative_prompt,
|
| 196 |
height=480,
|
|
@@ -214,7 +185,6 @@ with gr.Blocks() as demo:
|
|
| 214 |
gr.Markdown("run Wan 2.2 in just 6-8 steps, with [FusionX Phantom LoRA by DeeJayT](https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX/tree/main/FusionX_LoRa), compatible with 🧨 diffusers")
|
| 215 |
with gr.Row():
|
| 216 |
with gr.Column():
|
| 217 |
-
input_image_component = gr.Image(type="pil", label="Input Image (auto-resized to target H/W)", visible=False)
|
| 218 |
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
|
| 219 |
duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=MAX_DURATION, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
|
| 220 |
|
|
@@ -237,15 +207,14 @@ with gr.Blocks() as demo:
|
|
| 237 |
]
|
| 238 |
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
|
| 239 |
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
# )
|
| 249 |
|
| 250 |
if __name__ == "__main__":
|
| 251 |
demo.queue().launch(mcp_server=True)
|
|
|
|
| 5 |
# Actual demo code
|
| 6 |
import spaces
|
| 7 |
import torch
|
| 8 |
+
from diffusers import WanPipeline, AutoencoderKLWan
|
| 9 |
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
|
| 10 |
from diffusers.utils.export_utils import export_to_video
|
| 11 |
import gradio as gr
|
|
|
|
| 30 |
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
|
| 31 |
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)
|
| 32 |
|
| 33 |
+
vae = AutoencoderKLWan.from_pretrained("Wan-AI/Wan2.2-T2V-A14B-Diffusers", subfolder="vae", torch_dtype=torch.float32)
|
| 34 |
pipe = WanPipeline.from_pretrained(MODEL_ID,
|
| 35 |
transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
|
| 36 |
subfolder='transformer',
|
|
|
|
| 42 |
torch_dtype=torch.bfloat16,
|
| 43 |
device_map='cuda',
|
| 44 |
),
|
| 45 |
+
vae=vae,
|
| 46 |
torch_dtype=torch.bfloat16,
|
| 47 |
).to('cuda')
|
| 48 |
|
|
|
|
| 81 |
torch.cuda.empty_cache()
|
| 82 |
|
| 83 |
optimize_pipeline_(pipe,
|
|
|
|
| 84 |
prompt='prompt',
|
| 85 |
height=LANDSCAPE_HEIGHT,
|
| 86 |
width=LANDSCAPE_WIDTH,
|
|
|
|
| 88 |
)
|
| 89 |
|
| 90 |
|
| 91 |
+
default_prompt_i2v = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
|
| 92 |
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
|
| 93 |
|
| 94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
def get_duration(
|
|
|
|
| 96 |
prompt,
|
| 97 |
negative_prompt,
|
| 98 |
duration_seconds,
|
|
|
|
| 107 |
|
| 108 |
@spaces.GPU(duration=get_duration)
|
| 109 |
def generate_video(
|
|
|
|
| 110 |
prompt,
|
| 111 |
negative_prompt=default_negative_prompt,
|
| 112 |
duration_seconds = MAX_DURATION,
|
| 113 |
guidance_scale = 1,
|
| 114 |
guidance_scale_2 = 3,
|
| 115 |
+
steps = 4,
|
| 116 |
seed = 42,
|
| 117 |
randomize_seed = False,
|
| 118 |
progress=gr.Progress(track_tqdm=True),
|
|
|
|
| 125 |
for fast generation in 6-8 steps.
|
| 126 |
|
| 127 |
Args:
|
|
|
|
| 128 |
prompt (str): Text prompt describing the desired animation or motion.
|
| 129 |
negative_prompt (str, optional): Negative prompt to avoid unwanted elements.
|
| 130 |
Defaults to default_negative_prompt (contains unwanted visual artifacts).
|
|
|
|
| 157 |
- The function uses GPU acceleration via the @spaces.GPU decorator
|
| 158 |
- Generation time varies based on steps and duration (see get_duration function)
|
| 159 |
"""
|
|
|
|
|
|
|
| 160 |
|
| 161 |
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
|
| 162 |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
|
|
|
| 163 |
|
| 164 |
output_frames_list = pipe(
|
|
|
|
| 165 |
prompt=prompt,
|
| 166 |
negative_prompt=negative_prompt,
|
| 167 |
height=480,
|
|
|
|
| 185 |
gr.Markdown("run Wan 2.2 in just 6-8 steps, with [FusionX Phantom LoRA by DeeJayT](https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX/tree/main/FusionX_LoRa), compatible with 🧨 diffusers")
|
| 186 |
with gr.Row():
|
| 187 |
with gr.Column():
|
|
|
|
| 188 |
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
|
| 189 |
duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=MAX_DURATION, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
|
| 190 |
|
|
|
|
| 207 |
]
|
| 208 |
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
|
| 209 |
|
| 210 |
+
gr.Examples(
|
| 211 |
+
examples=[
|
| 212 |
+
[
|
| 213 |
+
"Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
|
| 214 |
+
],
|
| 215 |
+
],
|
| 216 |
+
inputs=[prompt_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
|
| 217 |
+
)
|
|
|
|
| 218 |
|
| 219 |
if __name__ == "__main__":
|
| 220 |
demo.queue().launch(mcp_server=True)
|