Update app.py
Browse files
app.py
CHANGED
|
@@ -35,22 +35,7 @@ hf_hub_download_local(repo_id="Kijai/WanVideo_comfy", filename="Wan22-Lightning/
|
|
| 35 |
hf_hub_download_local(repo_id="Kijai/WanVideo_comfy", filename="Wan22-Lightning/Wan2.2-Lightning_I2V-A14B-4steps-lora_LOW_fp16.safetensors", local_dir="models/loras")
|
| 36 |
print("Downloads complete.")
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
LANDSCAPE_WIDTH = 832
|
| 42 |
-
LANDSCAPE_HEIGHT = 480
|
| 43 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 44 |
-
|
| 45 |
-
FIXED_FPS = 16
|
| 46 |
-
MIN_FRAMES_MODEL = 8
|
| 47 |
-
MAX_FRAMES_MODEL = 81
|
| 48 |
-
|
| 49 |
-
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
|
| 50 |
-
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
|
| 55 |
# --- Image Processing Functions ---
|
| 56 |
def calculate_video_dimensions(width, height, max_size=832, min_size=480):
|
|
@@ -283,65 +268,142 @@ model_management.load_models_gpu([
|
|
| 283 |
loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0] for loader in model_loaders
|
| 284 |
])
|
| 285 |
print("All models loaded successfully!")
|
| 286 |
-
import time
|
| 287 |
-
import gradio as gr
|
| 288 |
-
import tempfile
|
| 289 |
-
import torch
|
| 290 |
-
import random
|
| 291 |
-
import spaces
|
| 292 |
-
|
| 293 |
-
# --- Dynamic GPU duration logic ---
|
| 294 |
-
def get_duration(
|
| 295 |
-
start_image_pil,
|
| 296 |
-
end_image_pil,
|
| 297 |
-
prompt,
|
| 298 |
-
negative_prompt,
|
| 299 |
-
duration_seconds,
|
| 300 |
-
progress,
|
| 301 |
-
):
|
| 302 |
-
# 15ms per step → just an example
|
| 303 |
-
calc_time = steps * 15
|
| 304 |
-
print(f"[GPU Duration Estimate] {calc_time} sec for {steps} steps")
|
| 305 |
-
return min(calc_time, 300) # hard cap for safety
|
| 306 |
-
|
| 307 |
|
| 308 |
# --- Main Video Generation Logic ---
|
| 309 |
-
@spaces.GPU(duration=
|
| 310 |
def generate_video(
|
| 311 |
start_image_pil,
|
| 312 |
end_image_pil,
|
| 313 |
prompt,
|
| 314 |
negative_prompt="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走,过曝,",
|
| 315 |
-
|
| 316 |
progress=gr.Progress(track_tqdm=True)
|
| 317 |
):
|
| 318 |
"""
|
| 319 |
The main function to generate a video based on user inputs.
|
| 320 |
This function is called every time the user clicks the 'Generate' button.
|
| 321 |
"""
|
| 322 |
-
start_time = time.time()
|
| 323 |
FPS = 16
|
| 324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
|
| 326 |
-
|
| 327 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
|
| 333 |
-
return f"output/{save_result['ui']['images'][0]['filename']}"
|
| 334 |
|
| 335 |
|
| 336 |
-
# --- Gradio UI ---
|
| 337 |
css = '''
|
| 338 |
.fillable{max-width: 1100px !important}
|
| 339 |
.dark .progress-text {color: white}
|
| 340 |
'''
|
| 341 |
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as app:
|
| 342 |
gr.Markdown("# Wan 2.2 First/Last Frame Video Fast")
|
| 343 |
-
gr.Markdown("
|
| 344 |
-
|
| 345 |
with gr.Row():
|
| 346 |
with gr.Column():
|
| 347 |
with gr.Group():
|
|
@@ -350,14 +412,14 @@ with gr.Blocks(theme=gr.themes.Citrus(), css=css) as app:
|
|
| 350 |
end_image = gr.Image(type="pil", label="End Frame")
|
| 351 |
|
| 352 |
prompt = gr.Textbox(label="Prompt", info="Describe the transition between the two images")
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
negative_prompt = gr.Textbox(
|
| 362 |
label="Negative Prompt",
|
| 363 |
value="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走,过曝,",
|
|
@@ -371,7 +433,7 @@ with gr.Blocks(theme=gr.themes.Citrus(), css=css) as app:
|
|
| 371 |
|
| 372 |
generate_button.click(
|
| 373 |
fn=generate_video,
|
| 374 |
-
inputs=[start_image, end_image, prompt, negative_prompt,
|
| 375 |
outputs=output_video
|
| 376 |
)
|
| 377 |
|
|
@@ -388,4 +450,4 @@ with gr.Blocks(theme=gr.themes.Citrus(), css=css) as app:
|
|
| 388 |
)
|
| 389 |
|
| 390 |
if __name__ == "__main__":
|
| 391 |
-
app.launch(share=True)
|
|
|
|
| 35 |
hf_hub_download_local(repo_id="Kijai/WanVideo_comfy", filename="Wan22-Lightning/Wan2.2-Lightning_I2V-A14B-4steps-lora_LOW_fp16.safetensors", local_dir="models/loras")
|
| 36 |
print("Downloads complete.")
|
| 37 |
|
| 38 |
+
model_management.vram_state = model_management.VRAMState.HIGH_VRAM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
# --- Image Processing Functions ---
|
| 41 |
def calculate_video_dimensions(width, height, max_size=832, min_size=480):
|
|
|
|
| 268 |
loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0] for loader in model_loaders
|
| 269 |
])
|
| 270 |
print("All models loaded successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
# --- Main Video Generation Logic ---
|
| 273 |
+
@spaces.GPU(duration=120)
|
| 274 |
def generate_video(
|
| 275 |
start_image_pil,
|
| 276 |
end_image_pil,
|
| 277 |
prompt,
|
| 278 |
negative_prompt="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走,过曝,",
|
| 279 |
+
duration=33,
|
| 280 |
progress=gr.Progress(track_tqdm=True)
|
| 281 |
):
|
| 282 |
"""
|
| 283 |
The main function to generate a video based on user inputs.
|
| 284 |
This function is called every time the user clicks the 'Generate' button.
|
| 285 |
"""
|
|
|
|
| 286 |
FPS = 16
|
| 287 |
+
|
| 288 |
+
# Process images: resize and crop second image to match first
|
| 289 |
+
# The first image determines the dimensions
|
| 290 |
+
processed_start_image = start_image_pil.copy()
|
| 291 |
+
processed_end_image = resize_and_crop_to_match(end_image_pil, start_image_pil)
|
| 292 |
+
|
| 293 |
+
# Calculate video dimensions based on the first image
|
| 294 |
+
video_width, video_height = calculate_video_dimensions(
|
| 295 |
+
processed_start_image.width,
|
| 296 |
+
processed_start_image.height
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
print(f"Input image size: {processed_start_image.width}x{processed_start_image.height}")
|
| 300 |
+
print(f"Video dimensions: {video_width}x{video_height}")
|
| 301 |
+
|
| 302 |
+
clip = MODELS_AND_NODES["clip"]
|
| 303 |
+
vae = MODELS_AND_NODES["vae"]
|
| 304 |
+
model_low_noise = MODELS_AND_NODES["model_low_noise"]
|
| 305 |
+
model_high_noise = MODELS_AND_NODES["model_high_noise"]
|
| 306 |
+
clip_vision = MODELS_AND_NODES["clip_vision"]
|
| 307 |
+
|
| 308 |
+
cliptextencode = MODELS_AND_NODES["CLIPTextEncode"]
|
| 309 |
+
loadimage = MODELS_AND_NODES["LoadImage"]
|
| 310 |
+
clipvisionencode = MODELS_AND_NODES["CLIPVisionEncode"]
|
| 311 |
+
modelsamplingsd3 = MODELS_AND_NODES["ModelSamplingSD3"]
|
| 312 |
+
pathchsageattentionkj = MODELS_AND_NODES["PathchSageAttentionKJ"]
|
| 313 |
+
wanfirstlastframetovideo = MODELS_AND_NODES["WanFirstLastFrameToVideo"]
|
| 314 |
+
ksampleradvanced = MODELS_AND_NODES["KSamplerAdvanced"]
|
| 315 |
+
vaedecode = MODELS_AND_NODES["VAEDecode"]
|
| 316 |
+
createvideo = MODELS_AND_NODES["CreateVideo"]
|
| 317 |
+
savevideo = MODELS_AND_NODES["SaveVideo"]
|
| 318 |
+
|
| 319 |
+
# Save processed images to temporary files
|
| 320 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as start_file, \
|
| 321 |
+
tempfile.NamedTemporaryFile(suffix=".png", delete=False) as end_file:
|
| 322 |
+
processed_start_image.save(start_file.name)
|
| 323 |
+
processed_end_image.save(end_file.name)
|
| 324 |
+
start_image_path = start_file.name
|
| 325 |
+
end_image_path = end_file.name
|
| 326 |
+
|
| 327 |
+
with torch.inference_mode():
|
| 328 |
+
progress(0.1, desc="Encoding text and images...")
|
| 329 |
+
# --- Workflow execution ---
|
| 330 |
+
positive_conditioning = cliptextencode.encode(text=prompt, clip=get_value_at_index(clip, 0))
|
| 331 |
+
negative_conditioning = cliptextencode.encode(text=negative_prompt, clip=get_value_at_index(clip, 0))
|
| 332 |
+
|
| 333 |
+
start_image_loaded = loadimage.load_image(image=start_image_path)
|
| 334 |
+
end_image_loaded = loadimage.load_image(image=end_image_path)
|
| 335 |
+
|
| 336 |
+
clip_vision_encoded_start = clipvisionencode.encode(
|
| 337 |
+
crop="none", clip_vision=get_value_at_index(clip_vision, 0), image=get_value_at_index(start_image_loaded, 0)
|
| 338 |
+
)
|
| 339 |
+
clip_vision_encoded_end = clipvisionencode.encode(
|
| 340 |
+
crop="none", clip_vision=get_value_at_index(clip_vision, 0), image=get_value_at_index(end_image_loaded, 0)
|
| 341 |
+
)
|
| 342 |
|
| 343 |
+
progress(0.2, desc="Preparing initial latents...")
|
| 344 |
+
initial_latents = wanfirstlastframetovideo.EXECUTE_NORMALIZED(
|
| 345 |
+
width=video_width, height=video_height, length=duration, batch_size=1,
|
| 346 |
+
positive=get_value_at_index(positive_conditioning, 0),
|
| 347 |
+
negative=get_value_at_index(negative_conditioning, 0),
|
| 348 |
+
vae=get_value_at_index(vae, 0),
|
| 349 |
+
clip_vision_start_image=get_value_at_index(clip_vision_encoded_start, 0),
|
| 350 |
+
clip_vision_end_image=get_value_at_index(clip_vision_encoded_end, 0),
|
| 351 |
+
start_image=get_value_at_index(start_image_loaded, 0),
|
| 352 |
+
end_image=get_value_at_index(end_image_loaded, 0),
|
| 353 |
+
)
|
| 354 |
|
| 355 |
+
progress(0.3, desc="Patching models...")
|
| 356 |
+
model_low_patched = modelsamplingsd3.patch(shift=8, model=get_value_at_index(model_low_noise, 0))
|
| 357 |
+
model_low_final = pathchsageattentionkj.patch(sage_attention="auto", model=get_value_at_index(model_low_patched, 0))
|
| 358 |
+
|
| 359 |
+
model_high_patched = modelsamplingsd3.patch(shift=8, model=get_value_at_index(model_high_noise, 0))
|
| 360 |
+
model_high_final = pathchsageattentionkj.patch(sage_attention="auto", model=get_value_at_index(model_high_patched, 0))
|
| 361 |
+
|
| 362 |
+
progress(0.5, desc="Running KSampler (Step 1/2)...")
|
| 363 |
+
latent_step1 = ksampleradvanced.sample(
|
| 364 |
+
add_noise="enable", noise_seed=random.randint(1, 2**64), steps=8, cfg=1,
|
| 365 |
+
sampler_name="euler", scheduler="simple", start_at_step=0, end_at_step=4,
|
| 366 |
+
return_with_leftover_noise="enable", model=get_value_at_index(model_high_final, 0),
|
| 367 |
+
positive=get_value_at_index(initial_latents, 0),
|
| 368 |
+
negative=get_value_at_index(initial_latents, 1),
|
| 369 |
+
latent_image=get_value_at_index(initial_latents, 2),
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
progress(0.7, desc="Running KSampler (Step 2/2)...")
|
| 373 |
+
latent_step2 = ksampleradvanced.sample(
|
| 374 |
+
add_noise="disable", noise_seed=random.randint(1, 2**64), steps=8, cfg=1,
|
| 375 |
+
sampler_name="euler", scheduler="simple", start_at_step=4, end_at_step=10000,
|
| 376 |
+
return_with_leftover_noise="disable", model=get_value_at_index(model_low_final, 0),
|
| 377 |
+
positive=get_value_at_index(initial_latents, 0),
|
| 378 |
+
negative=get_value_at_index(initial_latents, 1),
|
| 379 |
+
latent_image=get_value_at_index(latent_step1, 0),
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
progress(0.8, desc="Decoding VAE...")
|
| 383 |
+
decoded_images = vaedecode.decode(samples=get_value_at_index(latent_step2, 0), vae=get_value_at_index(vae, 0))
|
| 384 |
+
|
| 385 |
+
progress(0.9, desc="Creating and saving video...")
|
| 386 |
+
video_data = createvideo.create_video(fps=FPS, images=get_value_at_index(decoded_images, 0))
|
| 387 |
+
|
| 388 |
+
# Save the video to ComfyUI's output directory
|
| 389 |
+
save_result = savevideo.save_video(
|
| 390 |
+
filename_prefix="GradioVideo", format="mp4", codec="h264",
|
| 391 |
+
video=get_value_at_index(video_data, 0),
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
progress(1.0, desc="Done!")
|
| 395 |
+
return f"output/{save_result['ui']['images'][0]['filename']}"
|
| 396 |
|
|
|
|
| 397 |
|
| 398 |
|
|
|
|
| 399 |
css = '''
|
| 400 |
.fillable{max-width: 1100px !important}
|
| 401 |
.dark .progress-text {color: white}
|
| 402 |
'''
|
| 403 |
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as app:
|
| 404 |
gr.Markdown("# Wan 2.2 First/Last Frame Video Fast")
|
| 405 |
+
gr.Markdown("Running the [Wan 2.2 First/Last Frame ComfyUI workflow](https://www.reddit.com/r/StableDiffusion/comments/1me4306/psa_wan_22_does_first_frame_last_frame_out_of_the/) and the [lightx2v/Wan2.2-Lightning](https://huggingface.co/lightx2v/Wan2.2-Lightning) 8-step LoRA on ZeroGPU")
|
| 406 |
+
|
| 407 |
with gr.Row():
|
| 408 |
with gr.Column():
|
| 409 |
with gr.Group():
|
|
|
|
| 412 |
end_image = gr.Image(type="pil", label="End Frame")
|
| 413 |
|
| 414 |
prompt = gr.Textbox(label="Prompt", info="Describe the transition between the two images")
|
| 415 |
+
|
| 416 |
+
with gr.Accordion("Advanced Settings", open=False, visible=True):
|
| 417 |
+
duration = gr.Radio(
|
| 418 |
+
[("Short (2s)", 33), ("Mid (4s)", 66)],
|
| 419 |
+
value=33,
|
| 420 |
+
label="Video Duration",
|
| 421 |
+
visible=False
|
| 422 |
+
)
|
| 423 |
negative_prompt = gr.Textbox(
|
| 424 |
label="Negative Prompt",
|
| 425 |
value="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走,过曝,",
|
|
|
|
| 433 |
|
| 434 |
generate_button.click(
|
| 435 |
fn=generate_video,
|
| 436 |
+
inputs=[start_image, end_image, prompt, negative_prompt, duration],
|
| 437 |
outputs=output_video
|
| 438 |
)
|
| 439 |
|
|
|
|
| 450 |
)
|
| 451 |
|
| 452 |
if __name__ == "__main__":
|
| 453 |
+
app.launch(share=True)
|