|
|
from transformers import Qwen2Tokenizer |
|
|
from comfy import sd1_clip |
|
|
import comfy.text_encoders.llama |
|
|
import os |
|
|
import torch |
|
|
import numbers |
|
|
|
|
|
class Qwen25_7BVLITokenizer(sd1_clip.SDTokenizer): |
|
|
def __init__(self, embedding_directory=None, tokenizer_data={}): |
|
|
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer") |
|
|
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=3584, embedding_key='qwen25_7b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data) |
|
|
|
|
|
|
|
|
class QwenImageTokenizer(sd1_clip.SD1Tokenizer): |
|
|
def __init__(self, embedding_directory=None, tokenizer_data={}): |
|
|
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen25_7b", tokenizer=Qwen25_7BVLITokenizer) |
|
|
self.llama_template = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n" |
|
|
self.llama_template_images = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>{}<|im_end|>\n<|im_start|>assistant\n" |
|
|
|
|
|
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, images=[], **kwargs): |
|
|
if llama_template is None: |
|
|
if len(images) > 0: |
|
|
llama_text = self.llama_template_images.format(text) |
|
|
else: |
|
|
llama_text = self.llama_template.format(text) |
|
|
else: |
|
|
llama_text = llama_template.format(text) |
|
|
tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs) |
|
|
key_name = next(iter(tokens)) |
|
|
embed_count = 0 |
|
|
qwen_tokens = tokens[key_name] |
|
|
for r in qwen_tokens: |
|
|
for i in range(len(r)): |
|
|
if r[i][0] == 151655: |
|
|
if len(images) > embed_count: |
|
|
r[i] = ({"type": "image", "data": images[embed_count], "original_type": "image"},) + r[i][1:] |
|
|
embed_count += 1 |
|
|
return tokens |
|
|
|
|
|
|
|
|
class Qwen25_7BVLIModel(sd1_clip.SDClipModel): |
|
|
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}): |
|
|
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen25_7BVLI, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options) |
|
|
|
|
|
|
|
|
class QwenImageTEModel(sd1_clip.SD1ClipModel): |
|
|
def __init__(self, device="cpu", dtype=None, model_options={}): |
|
|
super().__init__(device=device, dtype=dtype, name="qwen25_7b", clip_model=Qwen25_7BVLIModel, model_options=model_options) |
|
|
|
|
|
def encode_token_weights(self, token_weight_pairs): |
|
|
out, pooled, extra = super().encode_token_weights(token_weight_pairs) |
|
|
tok_pairs = token_weight_pairs["qwen25_7b"][0] |
|
|
count_im_start = 0 |
|
|
for i, v in enumerate(tok_pairs): |
|
|
elem = v[0] |
|
|
if not torch.is_tensor(elem): |
|
|
if isinstance(elem, numbers.Integral): |
|
|
if elem == 151644 and count_im_start < 2: |
|
|
template_end = i |
|
|
count_im_start += 1 |
|
|
|
|
|
if out.shape[1] > (template_end + 3): |
|
|
if tok_pairs[template_end + 1][0] == 872: |
|
|
if tok_pairs[template_end + 2][0] == 198: |
|
|
template_end += 3 |
|
|
|
|
|
out = out[:, template_end:] |
|
|
|
|
|
extra["attention_mask"] = extra["attention_mask"][:, template_end:] |
|
|
if extra["attention_mask"].sum() == torch.numel(extra["attention_mask"]): |
|
|
extra.pop("attention_mask") |
|
|
|
|
|
return out, pooled, extra |
|
|
|
|
|
|
|
|
def te(dtype_llama=None, llama_scaled_fp8=None): |
|
|
class QwenImageTEModel_(QwenImageTEModel): |
|
|
def __init__(self, device="cpu", dtype=None, model_options={}): |
|
|
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options: |
|
|
model_options = model_options.copy() |
|
|
model_options["scaled_fp8"] = llama_scaled_fp8 |
|
|
if dtype_llama is not None: |
|
|
dtype = dtype_llama |
|
|
super().__init__(device=device, dtype=dtype, model_options=model_options) |
|
|
return QwenImageTEModel_ |
|
|
|