|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, List, Union |
|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
|
|
|
import comfy.model_management |
|
|
import comfy.patcher_extension |
|
|
|
|
|
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps |
|
|
from .attention import LinearTransformerBlock, t2i_modulate |
|
|
from .lyric_encoder import ConformerEncoder as LyricEncoder |
|
|
|
|
|
|
|
|
def cross_norm(hidden_states, controlnet_input): |
|
|
|
|
|
mean_hidden_states, std_hidden_states = hidden_states.mean(dim=(1,2), keepdim=True), hidden_states.std(dim=(1,2), keepdim=True) |
|
|
mean_controlnet_input, std_controlnet_input = controlnet_input.mean(dim=(1,2), keepdim=True), controlnet_input.std(dim=(1,2), keepdim=True) |
|
|
controlnet_input = (controlnet_input - mean_controlnet_input) * (std_hidden_states / (std_controlnet_input + 1e-12)) + mean_hidden_states |
|
|
return controlnet_input |
|
|
|
|
|
|
|
|
|
|
|
class Qwen2RotaryEmbedding(nn.Module): |
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, dtype=None, device=None): |
|
|
super().__init__() |
|
|
|
|
|
self.dim = dim |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.base = base |
|
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=device).float() / self.dim)) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
|
|
|
self._set_cos_sin_cache( |
|
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32 |
|
|
) |
|
|
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
|
self.max_seq_len_cached = seq_len |
|
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) |
|
|
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
|
|
if seq_len > self.max_seq_len_cached: |
|
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
|
|
return ( |
|
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
|
) |
|
|
|
|
|
|
|
|
class T2IFinalLayer(nn.Module): |
|
|
""" |
|
|
The final layer of Sana. |
|
|
""" |
|
|
|
|
|
def __init__(self, hidden_size, patch_size=[16, 1], out_channels=256, dtype=None, device=None, operations=None): |
|
|
super().__init__() |
|
|
self.norm_final = operations.RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) |
|
|
self.linear = operations.Linear(hidden_size, patch_size[0] * patch_size[1] * out_channels, bias=True, dtype=dtype, device=device) |
|
|
self.scale_shift_table = nn.Parameter(torch.empty(2, hidden_size, dtype=dtype, device=device)) |
|
|
self.out_channels = out_channels |
|
|
self.patch_size = patch_size |
|
|
|
|
|
def unpatchfy( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
width: int, |
|
|
): |
|
|
|
|
|
new_height, new_width = 1, hidden_states.size(1) |
|
|
hidden_states = hidden_states.reshape( |
|
|
shape=(hidden_states.shape[0], new_height, new_width, self.patch_size[0], self.patch_size[1], self.out_channels) |
|
|
).contiguous() |
|
|
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) |
|
|
output = hidden_states.reshape( |
|
|
shape=(hidden_states.shape[0], self.out_channels, new_height * self.patch_size[0], new_width * self.patch_size[1]) |
|
|
).contiguous() |
|
|
if width > new_width: |
|
|
output = torch.nn.functional.pad(output, (0, width - new_width, 0, 0), 'constant', 0) |
|
|
elif width < new_width: |
|
|
output = output[:, :, :, :width] |
|
|
return output |
|
|
|
|
|
def forward(self, x, t, output_length): |
|
|
shift, scale = (comfy.model_management.cast_to(self.scale_shift_table[None], device=t.device, dtype=t.dtype) + t[:, None]).chunk(2, dim=1) |
|
|
x = t2i_modulate(self.norm_final(x), shift, scale) |
|
|
x = self.linear(x) |
|
|
|
|
|
output = self.unpatchfy(x, output_length) |
|
|
return output |
|
|
|
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
|
"""2D Image to Patch Embedding""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
height=16, |
|
|
width=4096, |
|
|
patch_size=(16, 1), |
|
|
in_channels=8, |
|
|
embed_dim=1152, |
|
|
bias=True, |
|
|
dtype=None, device=None, operations=None |
|
|
): |
|
|
super().__init__() |
|
|
patch_size_h, patch_size_w = patch_size |
|
|
self.early_conv_layers = nn.Sequential( |
|
|
operations.Conv2d(in_channels, in_channels*256, kernel_size=patch_size, stride=patch_size, padding=0, bias=bias, dtype=dtype, device=device), |
|
|
operations.GroupNorm(num_groups=32, num_channels=in_channels*256, eps=1e-6, affine=True, dtype=dtype, device=device), |
|
|
operations.Conv2d(in_channels*256, embed_dim, kernel_size=1, stride=1, padding=0, bias=bias, dtype=dtype, device=device) |
|
|
) |
|
|
self.patch_size = patch_size |
|
|
self.height, self.width = height // patch_size_h, width // patch_size_w |
|
|
self.base_size = self.width |
|
|
|
|
|
def forward(self, latent): |
|
|
|
|
|
latent = self.early_conv_layers(latent) |
|
|
latent = latent.flatten(2).transpose(1, 2) |
|
|
return latent |
|
|
|
|
|
|
|
|
class ACEStepTransformer2DModel(nn.Module): |
|
|
|
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
in_channels: Optional[int] = 8, |
|
|
num_layers: int = 28, |
|
|
inner_dim: int = 1536, |
|
|
attention_head_dim: int = 64, |
|
|
num_attention_heads: int = 24, |
|
|
mlp_ratio: float = 4.0, |
|
|
out_channels: int = 8, |
|
|
max_position: int = 32768, |
|
|
rope_theta: float = 1000000.0, |
|
|
speaker_embedding_dim: int = 512, |
|
|
text_embedding_dim: int = 768, |
|
|
ssl_encoder_depths: List[int] = [9, 9], |
|
|
ssl_names: List[str] = ["mert", "m-hubert"], |
|
|
ssl_latent_dims: List[int] = [1024, 768], |
|
|
lyric_encoder_vocab_size: int = 6681, |
|
|
lyric_hidden_size: int = 1024, |
|
|
patch_size: List[int] = [16, 1], |
|
|
max_height: int = 16, |
|
|
max_width: int = 4096, |
|
|
audio_model=None, |
|
|
dtype=None, device=None, operations=None |
|
|
|
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
self.dtype = dtype |
|
|
self.num_attention_heads = num_attention_heads |
|
|
self.attention_head_dim = attention_head_dim |
|
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
self.inner_dim = inner_dim |
|
|
self.out_channels = out_channels |
|
|
self.max_position = max_position |
|
|
self.patch_size = patch_size |
|
|
|
|
|
self.rope_theta = rope_theta |
|
|
|
|
|
self.rotary_emb = Qwen2RotaryEmbedding( |
|
|
dim=self.attention_head_dim, |
|
|
max_position_embeddings=self.max_position, |
|
|
base=self.rope_theta, |
|
|
dtype=dtype, |
|
|
device=device, |
|
|
) |
|
|
|
|
|
|
|
|
self.in_channels = in_channels |
|
|
|
|
|
self.num_layers = num_layers |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
|
[ |
|
|
LinearTransformerBlock( |
|
|
dim=self.inner_dim, |
|
|
num_attention_heads=self.num_attention_heads, |
|
|
attention_head_dim=attention_head_dim, |
|
|
mlp_ratio=mlp_ratio, |
|
|
add_cross_attention=True, |
|
|
add_cross_attention_dim=self.inner_dim, |
|
|
dtype=dtype, |
|
|
device=device, |
|
|
operations=operations, |
|
|
) |
|
|
for i in range(self.num_layers) |
|
|
] |
|
|
) |
|
|
|
|
|
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) |
|
|
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim, dtype=dtype, device=device, operations=operations) |
|
|
self.t_block = nn.Sequential(nn.SiLU(), operations.Linear(self.inner_dim, 6 * self.inner_dim, bias=True, dtype=dtype, device=device)) |
|
|
|
|
|
|
|
|
self.speaker_embedder = operations.Linear(speaker_embedding_dim, self.inner_dim, dtype=dtype, device=device) |
|
|
|
|
|
|
|
|
self.genre_embedder = operations.Linear(text_embedding_dim, self.inner_dim, dtype=dtype, device=device) |
|
|
|
|
|
|
|
|
self.lyric_embs = operations.Embedding(lyric_encoder_vocab_size, lyric_hidden_size, dtype=dtype, device=device) |
|
|
self.lyric_encoder = LyricEncoder(input_size=lyric_hidden_size, static_chunk_size=0, dtype=dtype, device=device, operations=operations) |
|
|
self.lyric_proj = operations.Linear(lyric_hidden_size, self.inner_dim, dtype=dtype, device=device) |
|
|
|
|
|
projector_dim = 2 * self.inner_dim |
|
|
|
|
|
self.projectors = nn.ModuleList([ |
|
|
nn.Sequential( |
|
|
operations.Linear(self.inner_dim, projector_dim, dtype=dtype, device=device), |
|
|
nn.SiLU(), |
|
|
operations.Linear(projector_dim, projector_dim, dtype=dtype, device=device), |
|
|
nn.SiLU(), |
|
|
operations.Linear(projector_dim, ssl_dim, dtype=dtype, device=device), |
|
|
) for ssl_dim in ssl_latent_dims |
|
|
]) |
|
|
|
|
|
self.proj_in = PatchEmbed( |
|
|
height=max_height, |
|
|
width=max_width, |
|
|
patch_size=patch_size, |
|
|
embed_dim=self.inner_dim, |
|
|
bias=True, |
|
|
dtype=dtype, |
|
|
device=device, |
|
|
operations=operations, |
|
|
) |
|
|
|
|
|
self.final_layer = T2IFinalLayer(self.inner_dim, patch_size=patch_size, out_channels=out_channels, dtype=dtype, device=device, operations=operations) |
|
|
|
|
|
def forward_lyric_encoder( |
|
|
self, |
|
|
lyric_token_idx: Optional[torch.LongTensor] = None, |
|
|
lyric_mask: Optional[torch.LongTensor] = None, |
|
|
out_dtype=None, |
|
|
): |
|
|
|
|
|
lyric_embs = self.lyric_embs(lyric_token_idx, out_dtype=out_dtype) |
|
|
prompt_prenet_out, _mask = self.lyric_encoder(lyric_embs, lyric_mask, decoding_chunk_size=1, num_decoding_left_chunks=-1) |
|
|
prompt_prenet_out = self.lyric_proj(prompt_prenet_out) |
|
|
return prompt_prenet_out |
|
|
|
|
|
def encode( |
|
|
self, |
|
|
encoder_text_hidden_states: Optional[torch.Tensor] = None, |
|
|
text_attention_mask: Optional[torch.LongTensor] = None, |
|
|
speaker_embeds: Optional[torch.FloatTensor] = None, |
|
|
lyric_token_idx: Optional[torch.LongTensor] = None, |
|
|
lyric_mask: Optional[torch.LongTensor] = None, |
|
|
lyrics_strength=1.0, |
|
|
): |
|
|
|
|
|
bs = encoder_text_hidden_states.shape[0] |
|
|
device = encoder_text_hidden_states.device |
|
|
|
|
|
|
|
|
encoder_spk_hidden_states = self.speaker_embedder(speaker_embeds).unsqueeze(1) |
|
|
|
|
|
|
|
|
encoder_text_hidden_states = self.genre_embedder(encoder_text_hidden_states) |
|
|
|
|
|
|
|
|
encoder_lyric_hidden_states = self.forward_lyric_encoder( |
|
|
lyric_token_idx=lyric_token_idx, |
|
|
lyric_mask=lyric_mask, |
|
|
out_dtype=encoder_text_hidden_states.dtype, |
|
|
) |
|
|
|
|
|
encoder_lyric_hidden_states *= lyrics_strength |
|
|
|
|
|
encoder_hidden_states = torch.cat([encoder_spk_hidden_states, encoder_text_hidden_states, encoder_lyric_hidden_states], dim=1) |
|
|
|
|
|
encoder_hidden_mask = None |
|
|
if text_attention_mask is not None: |
|
|
speaker_mask = torch.ones(bs, 1, device=device) |
|
|
encoder_hidden_mask = torch.cat([speaker_mask, text_attention_mask, lyric_mask], dim=1) |
|
|
|
|
|
return encoder_hidden_states, encoder_hidden_mask |
|
|
|
|
|
def decode( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: torch.Tensor, |
|
|
encoder_hidden_states: torch.Tensor, |
|
|
encoder_hidden_mask: torch.Tensor, |
|
|
timestep: Optional[torch.Tensor], |
|
|
output_length: int = 0, |
|
|
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None, |
|
|
controlnet_scale: Union[float, torch.Tensor] = 1.0, |
|
|
): |
|
|
embedded_timestep = self.timestep_embedder(self.time_proj(timestep).to(dtype=hidden_states.dtype)) |
|
|
temb = self.t_block(embedded_timestep) |
|
|
|
|
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
|
|
|
|
|
if block_controlnet_hidden_states is not None: |
|
|
control_condi = cross_norm(hidden_states, block_controlnet_hidden_states) |
|
|
hidden_states = hidden_states + control_condi * controlnet_scale |
|
|
|
|
|
|
|
|
|
|
|
rotary_freqs_cis = self.rotary_emb(hidden_states, seq_len=hidden_states.shape[1]) |
|
|
encoder_rotary_freqs_cis = self.rotary_emb(encoder_hidden_states, seq_len=encoder_hidden_states.shape[1]) |
|
|
|
|
|
for index_block, block in enumerate(self.transformer_blocks): |
|
|
hidden_states = block( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
encoder_hidden_states=encoder_hidden_states, |
|
|
encoder_attention_mask=encoder_hidden_mask, |
|
|
rotary_freqs_cis=rotary_freqs_cis, |
|
|
rotary_freqs_cis_cross=encoder_rotary_freqs_cis, |
|
|
temb=temb, |
|
|
) |
|
|
|
|
|
output = self.final_layer(hidden_states, embedded_timestep, output_length) |
|
|
return output |
|
|
|
|
|
def forward(self, |
|
|
x, |
|
|
timestep, |
|
|
attention_mask=None, |
|
|
context: Optional[torch.Tensor] = None, |
|
|
text_attention_mask: Optional[torch.LongTensor] = None, |
|
|
speaker_embeds: Optional[torch.FloatTensor] = None, |
|
|
lyric_token_idx: Optional[torch.LongTensor] = None, |
|
|
lyric_mask: Optional[torch.LongTensor] = None, |
|
|
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None, |
|
|
controlnet_scale: Union[float, torch.Tensor] = 1.0, |
|
|
lyrics_strength=1.0, |
|
|
**kwargs |
|
|
): |
|
|
return comfy.patcher_extension.WrapperExecutor.new_class_executor( |
|
|
self._forward, |
|
|
self, |
|
|
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, kwargs.get("transformer_options", {})) |
|
|
).execute(x, timestep, attention_mask, context, text_attention_mask, speaker_embeds, lyric_token_idx, lyric_mask, block_controlnet_hidden_states, |
|
|
controlnet_scale, lyrics_strength, **kwargs) |
|
|
|
|
|
def _forward( |
|
|
self, |
|
|
x, |
|
|
timestep, |
|
|
attention_mask=None, |
|
|
context: Optional[torch.Tensor] = None, |
|
|
text_attention_mask: Optional[torch.LongTensor] = None, |
|
|
speaker_embeds: Optional[torch.FloatTensor] = None, |
|
|
lyric_token_idx: Optional[torch.LongTensor] = None, |
|
|
lyric_mask: Optional[torch.LongTensor] = None, |
|
|
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None, |
|
|
controlnet_scale: Union[float, torch.Tensor] = 1.0, |
|
|
lyrics_strength=1.0, |
|
|
**kwargs |
|
|
): |
|
|
hidden_states = x |
|
|
encoder_text_hidden_states = context |
|
|
encoder_hidden_states, encoder_hidden_mask = self.encode( |
|
|
encoder_text_hidden_states=encoder_text_hidden_states, |
|
|
text_attention_mask=text_attention_mask, |
|
|
speaker_embeds=speaker_embeds, |
|
|
lyric_token_idx=lyric_token_idx, |
|
|
lyric_mask=lyric_mask, |
|
|
lyrics_strength=lyrics_strength, |
|
|
) |
|
|
|
|
|
output_length = hidden_states.shape[-1] |
|
|
|
|
|
output = self.decode( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
encoder_hidden_states=encoder_hidden_states, |
|
|
encoder_hidden_mask=encoder_hidden_mask, |
|
|
timestep=timestep, |
|
|
output_length=output_length, |
|
|
block_controlnet_hidden_states=block_controlnet_hidden_states, |
|
|
controlnet_scale=controlnet_scale, |
|
|
) |
|
|
|
|
|
return output |
|
|
|