|
|
import logging |
|
|
from typing import Optional |
|
|
|
|
|
import torch |
|
|
from comfy_api.input.video_types import VideoInput |
|
|
|
|
|
|
|
|
def get_image_dimensions(image: torch.Tensor) -> tuple[int, int]: |
|
|
if len(image.shape) == 4: |
|
|
return image.shape[1], image.shape[2] |
|
|
elif len(image.shape) == 3: |
|
|
return image.shape[0], image.shape[1] |
|
|
else: |
|
|
raise ValueError("Invalid image tensor shape.") |
|
|
|
|
|
|
|
|
def validate_image_dimensions( |
|
|
image: torch.Tensor, |
|
|
min_width: Optional[int] = None, |
|
|
max_width: Optional[int] = None, |
|
|
min_height: Optional[int] = None, |
|
|
max_height: Optional[int] = None, |
|
|
): |
|
|
height, width = get_image_dimensions(image) |
|
|
|
|
|
if min_width is not None and width < min_width: |
|
|
raise ValueError(f"Image width must be at least {min_width}px, got {width}px") |
|
|
if max_width is not None and width > max_width: |
|
|
raise ValueError(f"Image width must be at most {max_width}px, got {width}px") |
|
|
if min_height is not None and height < min_height: |
|
|
raise ValueError( |
|
|
f"Image height must be at least {min_height}px, got {height}px" |
|
|
) |
|
|
if max_height is not None and height > max_height: |
|
|
raise ValueError(f"Image height must be at most {max_height}px, got {height}px") |
|
|
|
|
|
|
|
|
def validate_image_aspect_ratio( |
|
|
image: torch.Tensor, |
|
|
min_aspect_ratio: Optional[float] = None, |
|
|
max_aspect_ratio: Optional[float] = None, |
|
|
): |
|
|
width, height = get_image_dimensions(image) |
|
|
aspect_ratio = width / height |
|
|
|
|
|
if min_aspect_ratio is not None and aspect_ratio < min_aspect_ratio: |
|
|
raise ValueError( |
|
|
f"Image aspect ratio must be at least {min_aspect_ratio}, got {aspect_ratio}" |
|
|
) |
|
|
if max_aspect_ratio is not None and aspect_ratio > max_aspect_ratio: |
|
|
raise ValueError( |
|
|
f"Image aspect ratio must be at most {max_aspect_ratio}, got {aspect_ratio}" |
|
|
) |
|
|
|
|
|
|
|
|
def validate_image_aspect_ratio_range( |
|
|
image: torch.Tensor, |
|
|
min_ratio: tuple[float, float], |
|
|
max_ratio: tuple[float, float], |
|
|
*, |
|
|
strict: bool = True, |
|
|
) -> float: |
|
|
a1, b1 = min_ratio |
|
|
a2, b2 = max_ratio |
|
|
if a1 <= 0 or b1 <= 0 or a2 <= 0 or b2 <= 0: |
|
|
raise ValueError("Ratios must be positive, like (1, 4) or (4, 1).") |
|
|
lo, hi = (a1 / b1), (a2 / b2) |
|
|
if lo > hi: |
|
|
lo, hi = hi, lo |
|
|
a1, b1, a2, b2 = a2, b2, a1, b1 |
|
|
w, h = get_image_dimensions(image) |
|
|
if w <= 0 or h <= 0: |
|
|
raise ValueError(f"Invalid image dimensions: {w}x{h}") |
|
|
ar = w / h |
|
|
ok = (lo < ar < hi) if strict else (lo <= ar <= hi) |
|
|
if not ok: |
|
|
op = "<" if strict else "≤" |
|
|
raise ValueError(f"Image aspect ratio {ar:.6g} is outside allowed range: {a1}:{b1} {op} ratio {op} {a2}:{b2}") |
|
|
return ar |
|
|
|
|
|
|
|
|
def validate_aspect_ratio_closeness( |
|
|
start_img, |
|
|
end_img, |
|
|
min_rel: float, |
|
|
max_rel: float, |
|
|
*, |
|
|
strict: bool = False, |
|
|
) -> None: |
|
|
w1, h1 = get_image_dimensions(start_img) |
|
|
w2, h2 = get_image_dimensions(end_img) |
|
|
if min(w1, h1, w2, h2) <= 0: |
|
|
raise ValueError("Invalid image dimensions") |
|
|
ar1 = w1 / h1 |
|
|
ar2 = w2 / h2 |
|
|
|
|
|
closeness = max(ar1, ar2) / min(ar1, ar2) |
|
|
limit = max(max_rel, 1.0 / min_rel) |
|
|
if (closeness >= limit) if strict else (closeness > limit): |
|
|
raise ValueError(f"Aspect ratios must be close: start/end={ar1/ar2:.4f}, allowed range {min_rel}–{max_rel}.") |
|
|
|
|
|
|
|
|
def validate_video_dimensions( |
|
|
video: VideoInput, |
|
|
min_width: Optional[int] = None, |
|
|
max_width: Optional[int] = None, |
|
|
min_height: Optional[int] = None, |
|
|
max_height: Optional[int] = None, |
|
|
): |
|
|
try: |
|
|
width, height = video.get_dimensions() |
|
|
except Exception as e: |
|
|
logging.error("Error getting dimensions of video: %s", e) |
|
|
return |
|
|
|
|
|
if min_width is not None and width < min_width: |
|
|
raise ValueError(f"Video width must be at least {min_width}px, got {width}px") |
|
|
if max_width is not None and width > max_width: |
|
|
raise ValueError(f"Video width must be at most {max_width}px, got {width}px") |
|
|
if min_height is not None and height < min_height: |
|
|
raise ValueError( |
|
|
f"Video height must be at least {min_height}px, got {height}px" |
|
|
) |
|
|
if max_height is not None and height > max_height: |
|
|
raise ValueError(f"Video height must be at most {max_height}px, got {height}px") |
|
|
|
|
|
|
|
|
def validate_video_duration( |
|
|
video: VideoInput, |
|
|
min_duration: Optional[float] = None, |
|
|
max_duration: Optional[float] = None, |
|
|
): |
|
|
try: |
|
|
duration = video.get_duration() |
|
|
except Exception as e: |
|
|
logging.error("Error getting duration of video: %s", e) |
|
|
return |
|
|
|
|
|
epsilon = 0.0001 |
|
|
if min_duration is not None and min_duration - epsilon > duration: |
|
|
raise ValueError( |
|
|
f"Video duration must be at least {min_duration}s, got {duration}s" |
|
|
) |
|
|
if max_duration is not None and duration > max_duration + epsilon: |
|
|
raise ValueError( |
|
|
f"Video duration must be at most {max_duration}s, got {duration}s" |
|
|
) |
|
|
|
|
|
|
|
|
def get_number_of_images(images): |
|
|
if isinstance(images, torch.Tensor): |
|
|
return images.shape[0] if images.ndim >= 4 else 1 |
|
|
return len(images) |
|
|
|