File size: 7,206 Bytes
62bb9d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import logging
from typing import Optional

import torch
import comfy.model_management
from .base import (
    WeightAdapterBase,
    WeightAdapterTrainBase,
    weight_decompose,
    pad_tensor_to_shape,
    tucker_weight_from_conv,
)


class LoraDiff(WeightAdapterTrainBase):
    def __init__(self, weights):
        super().__init__()
        mat1, mat2, alpha, mid, dora_scale, reshape = weights
        out_dim, rank = mat1.shape[0], mat1.shape[1]
        rank, in_dim = mat2.shape[0], mat2.shape[1]
        if mid is not None:
            convdim = mid.ndim - 2
            layer = (
                torch.nn.Conv1d,
                torch.nn.Conv2d,
                torch.nn.Conv3d
            )[convdim]
        else:
            layer = torch.nn.Linear
        self.lora_up = layer(rank, out_dim, bias=False)
        self.lora_down = layer(in_dim, rank, bias=False)
        self.lora_up.weight.data.copy_(mat1)
        self.lora_down.weight.data.copy_(mat2)
        if mid is not None:
            self.lora_mid = layer(mid, rank, bias=False)
            self.lora_mid.weight.data.copy_(mid)
        else:
            self.lora_mid = None
        self.rank = rank
        self.alpha = torch.nn.Parameter(torch.tensor(alpha), requires_grad=False)

    def __call__(self, w):
        org_dtype = w.dtype
        if self.lora_mid is None:
            diff = self.lora_up.weight @ self.lora_down.weight
        else:
            diff = tucker_weight_from_conv(
                self.lora_up.weight, self.lora_down.weight, self.lora_mid.weight
            )
        scale = self.alpha / self.rank
        weight = w + scale * diff.reshape(w.shape)
        return weight.to(org_dtype)

    def passive_memory_usage(self):
        return sum(param.numel() * param.element_size() for param in self.parameters())


class LoRAAdapter(WeightAdapterBase):
    name = "lora"

    def __init__(self, loaded_keys, weights):
        self.loaded_keys = loaded_keys
        self.weights = weights

    @classmethod
    def create_train(cls, weight, rank=1, alpha=1.0):
        out_dim = weight.shape[0]
        in_dim = weight.shape[1:].numel()
        mat1 = torch.empty(out_dim, rank, device=weight.device, dtype=weight.dtype)
        mat2 = torch.empty(rank, in_dim, device=weight.device, dtype=weight.dtype)
        torch.nn.init.kaiming_uniform_(mat1, a=5**0.5)
        torch.nn.init.constant_(mat2, 0.0)
        return LoraDiff(
            (mat1, mat2, alpha, None, None, None)
        )

    def to_train(self):
        return LoraDiff(self.weights)

    @classmethod
    def load(
        cls,
        x: str,
        lora: dict[str, torch.Tensor],
        alpha: float,
        dora_scale: torch.Tensor,
        loaded_keys: set[str] = None,
    ) -> Optional["LoRAAdapter"]:
        if loaded_keys is None:
            loaded_keys = set()

        reshape_name = "{}.reshape_weight".format(x)
        regular_lora = "{}.lora_up.weight".format(x)
        diffusers_lora = "{}_lora.up.weight".format(x)
        diffusers2_lora = "{}.lora_B.weight".format(x)
        diffusers3_lora = "{}.lora.up.weight".format(x)
        mochi_lora = "{}.lora_B".format(x)
        transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
        qwen_default_lora = "{}.lora_B.default.weight".format(x)
        A_name = None

        if regular_lora in lora.keys():
            A_name = regular_lora
            B_name = "{}.lora_down.weight".format(x)
            mid_name = "{}.lora_mid.weight".format(x)
        elif diffusers_lora in lora.keys():
            A_name = diffusers_lora
            B_name = "{}_lora.down.weight".format(x)
            mid_name = None
        elif diffusers2_lora in lora.keys():
            A_name = diffusers2_lora
            B_name = "{}.lora_A.weight".format(x)
            mid_name = None
        elif diffusers3_lora in lora.keys():
            A_name = diffusers3_lora
            B_name = "{}.lora.down.weight".format(x)
            mid_name = None
        elif mochi_lora in lora.keys():
            A_name = mochi_lora
            B_name = "{}.lora_A".format(x)
            mid_name = None
        elif transformers_lora in lora.keys():
            A_name = transformers_lora
            B_name = "{}.lora_linear_layer.down.weight".format(x)
            mid_name = None
        elif qwen_default_lora in lora.keys():
            A_name = qwen_default_lora
            B_name = "{}.lora_A.default.weight".format(x)
            mid_name = None

        if A_name is not None:
            mid = None
            if mid_name is not None and mid_name in lora.keys():
                mid = lora[mid_name]
                loaded_keys.add(mid_name)
            reshape = None
            if reshape_name in lora.keys():
                try:
                    reshape = lora[reshape_name].tolist()
                    loaded_keys.add(reshape_name)
                except:
                    pass
            weights = (lora[A_name], lora[B_name], alpha, mid, dora_scale, reshape)
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
            return cls(loaded_keys, weights)
        else:
            return None

    def calculate_weight(
        self,
        weight,
        key,
        strength,
        strength_model,
        offset,
        function,
        intermediate_dtype=torch.float32,
        original_weight=None,
    ):
        v = self.weights
        mat1 = comfy.model_management.cast_to_device(
            v[0], weight.device, intermediate_dtype
        )
        mat2 = comfy.model_management.cast_to_device(
            v[1], weight.device, intermediate_dtype
        )
        dora_scale = v[4]
        reshape = v[5]

        if reshape is not None:
            weight = pad_tensor_to_shape(weight, reshape)

        if v[2] is not None:
            alpha = v[2] / mat2.shape[0]
        else:
            alpha = 1.0

        if v[3] is not None:
            # locon mid weights, hopefully the math is fine because I didn't properly test it
            mat3 = comfy.model_management.cast_to_device(
                v[3], weight.device, intermediate_dtype
            )
            final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
            mat2 = (
                torch.mm(
                    mat2.transpose(0, 1).flatten(start_dim=1),
                    mat3.transpose(0, 1).flatten(start_dim=1),
                )
                .reshape(final_shape)
                .transpose(0, 1)
            )
        try:
            lora_diff = torch.mm(
                mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)
            ).reshape(weight.shape)
            if dora_scale is not None:
                weight = weight_decompose(
                    dora_scale,
                    weight,
                    lora_diff,
                    alpha,
                    strength,
                    intermediate_dtype,
                    function,
                )
            else:
                weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
        except Exception as e:
            logging.error("ERROR {} {} {}".format(self.name, key, e))
        return weight