File size: 8,815 Bytes
62bb9d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import logging
from typing import Optional

import torch
import comfy.model_management
from .base import WeightAdapterBase, WeightAdapterTrainBase, weight_decompose


class HadaWeight(torch.autograd.Function):
    @staticmethod
    def forward(ctx, w1u, w1d, w2u, w2d, scale=torch.tensor(1)):
        ctx.save_for_backward(w1d, w1u, w2d, w2u, scale)
        diff_weight = ((w1u @ w1d) * (w2u @ w2d)) * scale
        return diff_weight

    @staticmethod
    def backward(ctx, grad_out):
        (w1d, w1u, w2d, w2u, scale) = ctx.saved_tensors
        grad_out = grad_out * scale
        temp = grad_out * (w2u @ w2d)
        grad_w1u = temp @ w1d.T
        grad_w1d = w1u.T @ temp

        temp = grad_out * (w1u @ w1d)
        grad_w2u = temp @ w2d.T
        grad_w2d = w2u.T @ temp

        del temp
        return grad_w1u, grad_w1d, grad_w2u, grad_w2d, None


class HadaWeightTucker(torch.autograd.Function):
    @staticmethod
    def forward(ctx, t1, w1u, w1d, t2, w2u, w2d, scale=torch.tensor(1)):
        ctx.save_for_backward(t1, w1d, w1u, t2, w2d, w2u, scale)

        rebuild1 = torch.einsum("i j ..., j r, i p -> p r ...", t1, w1d, w1u)
        rebuild2 = torch.einsum("i j ..., j r, i p -> p r ...", t2, w2d, w2u)

        return rebuild1 * rebuild2 * scale

    @staticmethod
    def backward(ctx, grad_out):
        (t1, w1d, w1u, t2, w2d, w2u, scale) = ctx.saved_tensors
        grad_out = grad_out * scale

        temp = torch.einsum("i j ..., j r -> i r ...", t2, w2d)
        rebuild = torch.einsum("i j ..., i r -> r j ...", temp, w2u)

        grad_w = rebuild * grad_out
        del rebuild

        grad_w1u = torch.einsum("r j ..., i j ... -> r i", temp, grad_w)
        grad_temp = torch.einsum("i j ..., i r -> r j ...", grad_w, w1u.T)
        del grad_w, temp

        grad_w1d = torch.einsum("i r ..., i j ... -> r j", t1, grad_temp)
        grad_t1 = torch.einsum("i j ..., j r -> i r ...", grad_temp, w1d.T)
        del grad_temp

        temp = torch.einsum("i j ..., j r -> i r ...", t1, w1d)
        rebuild = torch.einsum("i j ..., i r -> r j ...", temp, w1u)

        grad_w = rebuild * grad_out
        del rebuild

        grad_w2u = torch.einsum("r j ..., i j ... -> r i", temp, grad_w)
        grad_temp = torch.einsum("i j ..., i r -> r j ...", grad_w, w2u.T)
        del grad_w, temp

        grad_w2d = torch.einsum("i r ..., i j ... -> r j", t2, grad_temp)
        grad_t2 = torch.einsum("i j ..., j r -> i r ...", grad_temp, w2d.T)
        del grad_temp
        return grad_t1, grad_w1u, grad_w1d, grad_t2, grad_w2u, grad_w2d, None


class LohaDiff(WeightAdapterTrainBase):
    def __init__(self, weights):
        super().__init__()
        # Unpack weights tuple from LoHaAdapter
        w1a, w1b, alpha, w2a, w2b, t1, t2, _ = weights

        # Create trainable parameters
        self.hada_w1_a = torch.nn.Parameter(w1a)
        self.hada_w1_b = torch.nn.Parameter(w1b)
        self.hada_w2_a = torch.nn.Parameter(w2a)
        self.hada_w2_b = torch.nn.Parameter(w2b)

        self.use_tucker = False
        if t1 is not None and t2 is not None:
            self.use_tucker = True
            self.hada_t1 = torch.nn.Parameter(t1)
            self.hada_t2 = torch.nn.Parameter(t2)
        else:
            # Keep the attributes for consistent access
            self.hada_t1 = None
            self.hada_t2 = None

        # Store rank and non-trainable alpha
        self.rank = w1b.shape[0]
        self.alpha = torch.nn.Parameter(torch.tensor(alpha), requires_grad=False)

    def __call__(self, w):
        org_dtype = w.dtype

        scale = self.alpha / self.rank
        if self.use_tucker:
            diff_weight = HadaWeightTucker.apply(self.hada_t1, self.hada_w1_a, self.hada_w1_b, self.hada_t2, self.hada_w2_a, self.hada_w2_b, scale)
        else:
            diff_weight = HadaWeight.apply(self.hada_w1_a, self.hada_w1_b, self.hada_w2_a, self.hada_w2_b, scale)

        # Add the scaled difference to the original weight
        weight = w.to(diff_weight) + diff_weight.reshape(w.shape)

        return weight.to(org_dtype)

    def passive_memory_usage(self):
        """Calculates memory usage of the trainable parameters."""
        return sum(param.numel() * param.element_size() for param in self.parameters())


class LoHaAdapter(WeightAdapterBase):
    name = "loha"

    def __init__(self, loaded_keys, weights):
        self.loaded_keys = loaded_keys
        self.weights = weights

    @classmethod
    def create_train(cls, weight, rank=1, alpha=1.0):
        out_dim = weight.shape[0]
        in_dim = weight.shape[1:].numel()
        mat1 = torch.empty(out_dim, rank, device=weight.device, dtype=weight.dtype)
        mat2 = torch.empty(rank, in_dim, device=weight.device, dtype=weight.dtype)
        torch.nn.init.normal_(mat1, 0.1)
        torch.nn.init.constant_(mat2, 0.0)
        mat3 = torch.empty(out_dim, rank, device=weight.device, dtype=weight.dtype)
        mat4 = torch.empty(rank, in_dim, device=weight.device, dtype=weight.dtype)
        torch.nn.init.normal_(mat3, 0.1)
        torch.nn.init.normal_(mat4, 0.01)
        return LohaDiff(
            (mat1, mat2, alpha, mat3, mat4, None, None, None)
        )

    def to_train(self):
        return LohaDiff(self.weights)

    @classmethod
    def load(
        cls,
        x: str,
        lora: dict[str, torch.Tensor],
        alpha: float,
        dora_scale: torch.Tensor,
        loaded_keys: set[str] = None,
    ) -> Optional["LoHaAdapter"]:
        if loaded_keys is None:
            loaded_keys = set()

        hada_w1_a_name = "{}.hada_w1_a".format(x)
        hada_w1_b_name = "{}.hada_w1_b".format(x)
        hada_w2_a_name = "{}.hada_w2_a".format(x)
        hada_w2_b_name = "{}.hada_w2_b".format(x)
        hada_t1_name = "{}.hada_t1".format(x)
        hada_t2_name = "{}.hada_t2".format(x)
        if hada_w1_a_name in lora.keys():
            hada_t1 = None
            hada_t2 = None
            if hada_t1_name in lora.keys():
                hada_t1 = lora[hada_t1_name]
                hada_t2 = lora[hada_t2_name]
                loaded_keys.add(hada_t1_name)
                loaded_keys.add(hada_t2_name)

            weights = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale)
            loaded_keys.add(hada_w1_a_name)
            loaded_keys.add(hada_w1_b_name)
            loaded_keys.add(hada_w2_a_name)
            loaded_keys.add(hada_w2_b_name)
            return cls(loaded_keys, weights)
        else:
            return None

    def calculate_weight(
        self,
        weight,
        key,
        strength,
        strength_model,
        offset,
        function,
        intermediate_dtype=torch.float32,
        original_weight=None,
    ):
        v = self.weights
        w1a = v[0]
        w1b = v[1]
        if v[2] is not None:
            alpha = v[2] / w1b.shape[0]
        else:
            alpha = 1.0

        w2a = v[3]
        w2b = v[4]
        dora_scale = v[7]
        if v[5] is not None: #cp decomposition
            t1 = v[5]
            t2 = v[6]
            m1 = torch.einsum('i j k l, j r, i p -> p r k l',
                                comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype),
                                comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype),
                                comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype))

            m2 = torch.einsum('i j k l, j r, i p -> p r k l',
                                comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
                                comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype),
                                comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype))
        else:
            m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype),
                            comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype))
            m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype),
                            comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype))

        try:
            lora_diff = (m1 * m2).reshape(weight.shape)
            if dora_scale is not None:
                weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
            else:
                weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
        except Exception as e:
            logging.error("ERROR {} {} {}".format(self.name, key, e))
        return weight