File size: 60,879 Bytes
62bb9d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 |
from __future__ import annotations
import copy
import inspect
from abc import ABC, abstractmethod
from collections import Counter
from dataclasses import asdict, dataclass
from enum import Enum
from typing import Any, Callable, Literal, TypedDict, TypeVar, TYPE_CHECKING
from typing_extensions import NotRequired, final
# used for type hinting
import torch
if TYPE_CHECKING:
from spandrel import ImageModelDescriptor
from comfy.clip_vision import ClipVisionModel
from comfy.clip_vision import Output as ClipVisionOutput_
from comfy.controlnet import ControlNet
from comfy.hooks import HookGroup, HookKeyframeGroup
from comfy.model_patcher import ModelPatcher
from comfy.samplers import CFGGuider, Sampler
from comfy.sd import CLIP, VAE
from comfy.sd import StyleModel as StyleModel_
from comfy_api.input import VideoInput
from comfy_api.internal import (_ComfyNodeInternal, _NodeOutputInternal, classproperty, copy_class, first_real_override, is_class,
prune_dict, shallow_clone_class)
from comfy_api.latest._resources import Resources, ResourcesLocal
from comfy_execution.graph_utils import ExecutionBlocker
# from comfy_extras.nodes_images import SVG as SVG_ # NOTE: needs to be moved before can be imported due to circular reference
class FolderType(str, Enum):
input = "input"
output = "output"
temp = "temp"
class UploadType(str, Enum):
image = "image_upload"
audio = "audio_upload"
video = "video_upload"
model = "file_upload"
class RemoteOptions:
def __init__(self, route: str, refresh_button: bool, control_after_refresh: Literal["first", "last"]="first",
timeout: int=None, max_retries: int=None, refresh: int=None):
self.route = route
"""The route to the remote source."""
self.refresh_button = refresh_button
"""Specifies whether to show a refresh button in the UI below the widget."""
self.control_after_refresh = control_after_refresh
"""Specifies the control after the refresh button is clicked. If "first", the first item will be automatically selected, and so on."""
self.timeout = timeout
"""The maximum amount of time to wait for a response from the remote source in milliseconds."""
self.max_retries = max_retries
"""The maximum number of retries before aborting the request."""
self.refresh = refresh
"""The TTL of the remote input's value in milliseconds. Specifies the interval at which the remote input's value is refreshed."""
def as_dict(self):
return prune_dict({
"route": self.route,
"refresh_button": self.refresh_button,
"control_after_refresh": self.control_after_refresh,
"timeout": self.timeout,
"max_retries": self.max_retries,
"refresh": self.refresh,
})
class NumberDisplay(str, Enum):
number = "number"
slider = "slider"
class _StringIOType(str):
def __ne__(self, value: object) -> bool:
if self == "*" or value == "*":
return False
if not isinstance(value, str):
return True
a = frozenset(self.split(","))
b = frozenset(value.split(","))
return not (b.issubset(a) or a.issubset(b))
class _ComfyType(ABC):
Type = Any
io_type: str = None
# NOTE: this is a workaround to make the decorator return the correct type
T = TypeVar("T", bound=type)
def comfytype(io_type: str, **kwargs):
'''
Decorator to mark nested classes as ComfyType; io_type will be bound to the class.
A ComfyType may have the following attributes:
- Type = <type hint here>
- class Input(Input): ...
- class Output(Output): ...
'''
def decorator(cls: T) -> T:
if isinstance(cls, _ComfyType) or issubclass(cls, _ComfyType):
# clone Input and Output classes to avoid modifying the original class
new_cls = cls
if hasattr(new_cls, "Input"):
new_cls.Input = copy_class(new_cls.Input)
if hasattr(new_cls, "Output"):
new_cls.Output = copy_class(new_cls.Output)
else:
# copy class attributes except for special ones that shouldn't be in type()
cls_dict = {
k: v for k, v in cls.__dict__.items()
if k not in ('__dict__', '__weakref__', '__module__', '__doc__')
}
# new class
new_cls: ComfyTypeIO = type(
cls.__name__,
(cls, ComfyTypeIO),
cls_dict
)
# metadata preservation
new_cls.__module__ = cls.__module__
new_cls.__doc__ = cls.__doc__
# assign ComfyType attributes, if needed
# NOTE: use __ne__ trick for io_type (see node_typing.IO.__ne__ for details)
new_cls.io_type = _StringIOType(io_type)
if hasattr(new_cls, "Input") and new_cls.Input is not None:
new_cls.Input.Parent = new_cls
if hasattr(new_cls, "Output") and new_cls.Output is not None:
new_cls.Output.Parent = new_cls
return new_cls
return decorator
def Custom(io_type: str) -> type[ComfyTypeIO]:
'''Create a ComfyType for a custom io_type.'''
@comfytype(io_type=io_type)
class CustomComfyType(ComfyTypeIO):
...
return CustomComfyType
class _IO_V3:
'''
Base class for V3 Inputs and Outputs.
'''
Parent: _ComfyType = None
def __init__(self):
pass
@property
def io_type(self):
return self.Parent.io_type
@property
def Type(self):
return self.Parent.Type
class Input(_IO_V3):
'''
Base class for a V3 Input.
'''
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None):
super().__init__()
self.id = id
self.display_name = display_name
self.optional = optional
self.tooltip = tooltip
self.lazy = lazy
self.extra_dict = extra_dict if extra_dict is not None else {}
def as_dict(self):
return prune_dict({
"display_name": self.display_name,
"optional": self.optional,
"tooltip": self.tooltip,
"lazy": self.lazy,
}) | prune_dict(self.extra_dict)
def get_io_type(self):
return _StringIOType(self.io_type)
class WidgetInput(Input):
'''
Base class for a V3 Input with widget.
'''
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
default: Any=None,
socketless: bool=None, widget_type: str=None, force_input: bool=None, extra_dict=None):
super().__init__(id, display_name, optional, tooltip, lazy, extra_dict)
self.default = default
self.socketless = socketless
self.widget_type = widget_type
self.force_input = force_input
def as_dict(self):
return super().as_dict() | prune_dict({
"default": self.default,
"socketless": self.socketless,
"widgetType": self.widget_type,
"forceInput": self.force_input,
})
def get_io_type(self):
return self.widget_type if self.widget_type is not None else super().get_io_type()
class Output(_IO_V3):
def __init__(self, id: str=None, display_name: str=None, tooltip: str=None,
is_output_list=False):
self.id = id
self.display_name = display_name
self.tooltip = tooltip
self.is_output_list = is_output_list
def as_dict(self):
return prune_dict({
"display_name": self.display_name,
"tooltip": self.tooltip,
"is_output_list": self.is_output_list,
})
def get_io_type(self):
return self.io_type
class ComfyTypeI(_ComfyType):
'''ComfyType subclass that only has a default Input class - intended for types that only have Inputs.'''
class Input(Input):
...
class ComfyTypeIO(ComfyTypeI):
'''ComfyType subclass that has default Input and Output classes; useful for types with both Inputs and Outputs.'''
class Output(Output):
...
@comfytype(io_type="BOOLEAN")
class Boolean(ComfyTypeIO):
Type = bool
class Input(WidgetInput):
'''Boolean input.'''
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
default: bool=None, label_on: str=None, label_off: str=None,
socketless: bool=None, force_input: bool=None):
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input)
self.label_on = label_on
self.label_off = label_off
self.default: bool
def as_dict(self):
return super().as_dict() | prune_dict({
"label_on": self.label_on,
"label_off": self.label_off,
})
@comfytype(io_type="INT")
class Int(ComfyTypeIO):
Type = int
class Input(WidgetInput):
'''Integer input.'''
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
default: int=None, min: int=None, max: int=None, step: int=None, control_after_generate: bool=None,
display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None):
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input)
self.min = min
self.max = max
self.step = step
self.control_after_generate = control_after_generate
self.display_mode = display_mode
self.default: int
def as_dict(self):
return super().as_dict() | prune_dict({
"min": self.min,
"max": self.max,
"step": self.step,
"control_after_generate": self.control_after_generate,
"display": self.display_mode.value if self.display_mode else None,
})
@comfytype(io_type="FLOAT")
class Float(ComfyTypeIO):
Type = float
class Input(WidgetInput):
'''Float input.'''
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
default: float=None, min: float=None, max: float=None, step: float=None, round: float=None,
display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None):
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input)
self.min = min
self.max = max
self.step = step
self.round = round
self.display_mode = display_mode
self.default: float
def as_dict(self):
return super().as_dict() | prune_dict({
"min": self.min,
"max": self.max,
"step": self.step,
"round": self.round,
"display": self.display_mode,
})
@comfytype(io_type="STRING")
class String(ComfyTypeIO):
Type = str
class Input(WidgetInput):
'''String input.'''
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
multiline=False, placeholder: str=None, default: str=None, dynamic_prompts: bool=None,
socketless: bool=None, force_input: bool=None):
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input)
self.multiline = multiline
self.placeholder = placeholder
self.dynamic_prompts = dynamic_prompts
self.default: str
def as_dict(self):
return super().as_dict() | prune_dict({
"multiline": self.multiline,
"placeholder": self.placeholder,
"dynamicPrompts": self.dynamic_prompts,
})
@comfytype(io_type="COMBO")
class Combo(ComfyTypeI):
Type = str
class Input(WidgetInput):
"""Combo input (dropdown)."""
Type = str
def __init__(self, id: str, options: list[str]=None, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
default: str=None, control_after_generate: bool=None,
upload: UploadType=None, image_folder: FolderType=None,
remote: RemoteOptions=None,
socketless: bool=None):
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless)
self.multiselect = False
self.options = options
self.control_after_generate = control_after_generate
self.upload = upload
self.image_folder = image_folder
self.remote = remote
self.default: str
def as_dict(self):
return super().as_dict() | prune_dict({
"multiselect": self.multiselect,
"options": self.options,
"control_after_generate": self.control_after_generate,
**({self.upload.value: True} if self.upload is not None else {}),
"image_folder": self.image_folder.value if self.image_folder else None,
"remote": self.remote.as_dict() if self.remote else None,
})
@comfytype(io_type="COMBO")
class MultiCombo(ComfyTypeI):
'''Multiselect Combo input (dropdown for selecting potentially more than one value).'''
# TODO: something is wrong with the serialization, frontend does not recognize it as multiselect
Type = list[str]
class Input(Combo.Input):
def __init__(self, id: str, options: list[str], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
default: list[str]=None, placeholder: str=None, chip: bool=None, control_after_generate: bool=None,
socketless: bool=None):
super().__init__(id, options, display_name, optional, tooltip, lazy, default, control_after_generate, socketless=socketless)
self.multiselect = True
self.placeholder = placeholder
self.chip = chip
self.default: list[str]
def as_dict(self):
to_return = super().as_dict() | prune_dict({
"multi_select": self.multiselect,
"placeholder": self.placeholder,
"chip": self.chip,
})
return to_return
@comfytype(io_type="IMAGE")
class Image(ComfyTypeIO):
Type = torch.Tensor
@comfytype(io_type="WAN_CAMERA_EMBEDDING")
class WanCameraEmbedding(ComfyTypeIO):
Type = torch.Tensor
@comfytype(io_type="WEBCAM")
class Webcam(ComfyTypeIO):
Type = str
class Input(WidgetInput):
"""Webcam input."""
Type = str
def __init__(
self, id: str, display_name: str=None, optional=False,
tooltip: str=None, lazy: bool=None, default: str=None, socketless: bool=None
):
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless)
@comfytype(io_type="MASK")
class Mask(ComfyTypeIO):
Type = torch.Tensor
@comfytype(io_type="LATENT")
class Latent(ComfyTypeIO):
'''Latents are stored as a dictionary.'''
class LatentDict(TypedDict):
samples: torch.Tensor
'''Latent tensors.'''
noise_mask: NotRequired[torch.Tensor]
batch_index: NotRequired[list[int]]
type: NotRequired[str]
'''Only needed if dealing with these types: audio, hunyuan3dv2'''
Type = LatentDict
@comfytype(io_type="CONDITIONING")
class Conditioning(ComfyTypeIO):
class PooledDict(TypedDict):
pooled_output: torch.Tensor
'''Pooled output from CLIP.'''
control: NotRequired[ControlNet]
'''ControlNet to apply to conditioning.'''
control_apply_to_uncond: NotRequired[bool]
'''Whether to apply ControlNet to matching negative conditioning at sample time, if applicable.'''
cross_attn_controlnet: NotRequired[torch.Tensor]
'''CrossAttn from CLIP to use for controlnet only.'''
pooled_output_controlnet: NotRequired[torch.Tensor]
'''Pooled output from CLIP to use for controlnet only.'''
gligen: NotRequired[tuple[str, Gligen, list[tuple[torch.Tensor, int, ...]]]]
'''GLIGEN to apply to conditioning.'''
area: NotRequired[tuple[int, ...] | tuple[str, float, ...]]
'''Set area of conditioning. First half of values apply to dimensions, the second half apply to coordinates.
By default, the dimensions are based on total pixel amount, but the first value can be set to "percentage" to use a percentage of the image size instead.
(1024, 1024, 0, 0) would apply conditioning to the top-left 1024x1024 pixels.
("percentage", 0.5, 0.5, 0, 0) would apply conditioning to the top-left 50% of the image.''' # TODO: verify its actually top-left
strength: NotRequired[float]
'''Strength of conditioning. Default strength is 1.0.'''
mask: NotRequired[torch.Tensor]
'''Mask to apply conditioning to.'''
mask_strength: NotRequired[float]
'''Strength of conditioning mask. Default strength is 1.0.'''
set_area_to_bounds: NotRequired[bool]
'''Whether conditioning mask should determine bounds of area - if set to false, latents are sampled at full resolution and result is applied in mask.'''
concat_latent_image: NotRequired[torch.Tensor]
'''Used for inpainting and specific models.'''
concat_mask: NotRequired[torch.Tensor]
'''Used for inpainting and specific models.'''
concat_image: NotRequired[torch.Tensor]
'''Used by SD_4XUpscale_Conditioning.'''
noise_augmentation: NotRequired[float]
'''Used by SD_4XUpscale_Conditioning.'''
hooks: NotRequired[HookGroup]
'''Applies hooks to conditioning.'''
default: NotRequired[bool]
'''Whether to this conditioning is 'default'; default conditioning gets applied to any areas of the image that have no masks/areas applied, assuming at least one area/mask is present during sampling.'''
start_percent: NotRequired[float]
'''Determines relative step to begin applying conditioning, expressed as a float between 0.0 and 1.0.'''
end_percent: NotRequired[float]
'''Determines relative step to end applying conditioning, expressed as a float between 0.0 and 1.0.'''
clip_start_percent: NotRequired[float]
'''Internal variable for conditioning scheduling - start of application, expressed as a float between 0.0 and 1.0.'''
clip_end_percent: NotRequired[float]
'''Internal variable for conditioning scheduling - end of application, expressed as a float between 0.0 and 1.0.'''
attention_mask: NotRequired[torch.Tensor]
'''Masks text conditioning; used by StyleModel among others.'''
attention_mask_img_shape: NotRequired[tuple[int, ...]]
'''Masks text conditioning; used by StyleModel among others.'''
unclip_conditioning: NotRequired[list[dict]]
'''Used by unCLIP.'''
conditioning_lyrics: NotRequired[torch.Tensor]
'''Used by AceT5Model.'''
seconds_start: NotRequired[float]
'''Used by StableAudio.'''
seconds_total: NotRequired[float]
'''Used by StableAudio.'''
lyrics_strength: NotRequired[float]
'''Used by AceStepAudio.'''
width: NotRequired[int]
'''Used by certain models (e.g. CLIPTextEncodeSDXL/Refiner, PixArtAlpha).'''
height: NotRequired[int]
'''Used by certain models (e.g. CLIPTextEncodeSDXL/Refiner, PixArtAlpha).'''
aesthetic_score: NotRequired[float]
'''Used by CLIPTextEncodeSDXL/Refiner.'''
crop_w: NotRequired[int]
'''Used by CLIPTextEncodeSDXL.'''
crop_h: NotRequired[int]
'''Used by CLIPTextEncodeSDXL.'''
target_width: NotRequired[int]
'''Used by CLIPTextEncodeSDXL.'''
target_height: NotRequired[int]
'''Used by CLIPTextEncodeSDXL.'''
reference_latents: NotRequired[list[torch.Tensor]]
'''Used by ReferenceLatent.'''
guidance: NotRequired[float]
'''Used by Flux-like models with guidance embed.'''
guiding_frame_index: NotRequired[int]
'''Used by Hunyuan ImageToVideo.'''
ref_latent: NotRequired[torch.Tensor]
'''Used by Hunyuan ImageToVideo.'''
keyframe_idxs: NotRequired[list[int]]
'''Used by LTXV.'''
frame_rate: NotRequired[float]
'''Used by LTXV.'''
stable_cascade_prior: NotRequired[torch.Tensor]
'''Used by StableCascade.'''
elevation: NotRequired[list[float]]
'''Used by SV3D.'''
azimuth: NotRequired[list[float]]
'''Used by SV3D.'''
motion_bucket_id: NotRequired[int]
'''Used by SVD-like models.'''
fps: NotRequired[int]
'''Used by SVD-like models.'''
augmentation_level: NotRequired[float]
'''Used by SVD-like models.'''
clip_vision_output: NotRequired[ClipVisionOutput_]
'''Used by WAN-like models.'''
vace_frames: NotRequired[torch.Tensor]
'''Used by WAN VACE.'''
vace_mask: NotRequired[torch.Tensor]
'''Used by WAN VACE.'''
vace_strength: NotRequired[float]
'''Used by WAN VACE.'''
camera_conditions: NotRequired[Any] # TODO: assign proper type once defined
'''Used by WAN Camera.'''
time_dim_concat: NotRequired[torch.Tensor]
'''Used by WAN Phantom Subject.'''
CondList = list[tuple[torch.Tensor, PooledDict]]
Type = CondList
@comfytype(io_type="SAMPLER")
class Sampler(ComfyTypeIO):
if TYPE_CHECKING:
Type = Sampler
@comfytype(io_type="SIGMAS")
class Sigmas(ComfyTypeIO):
Type = torch.Tensor
@comfytype(io_type="NOISE")
class Noise(ComfyTypeIO):
Type = torch.Tensor
@comfytype(io_type="GUIDER")
class Guider(ComfyTypeIO):
if TYPE_CHECKING:
Type = CFGGuider
@comfytype(io_type="CLIP")
class Clip(ComfyTypeIO):
if TYPE_CHECKING:
Type = CLIP
@comfytype(io_type="CONTROL_NET")
class ControlNet(ComfyTypeIO):
if TYPE_CHECKING:
Type = ControlNet
@comfytype(io_type="VAE")
class Vae(ComfyTypeIO):
if TYPE_CHECKING:
Type = VAE
@comfytype(io_type="MODEL")
class Model(ComfyTypeIO):
if TYPE_CHECKING:
Type = ModelPatcher
@comfytype(io_type="CLIP_VISION")
class ClipVision(ComfyTypeIO):
if TYPE_CHECKING:
Type = ClipVisionModel
@comfytype(io_type="CLIP_VISION_OUTPUT")
class ClipVisionOutput(ComfyTypeIO):
if TYPE_CHECKING:
Type = ClipVisionOutput_
@comfytype(io_type="STYLE_MODEL")
class StyleModel(ComfyTypeIO):
if TYPE_CHECKING:
Type = StyleModel_
@comfytype(io_type="GLIGEN")
class Gligen(ComfyTypeIO):
'''ModelPatcher that wraps around a 'Gligen' model.'''
if TYPE_CHECKING:
Type = ModelPatcher
@comfytype(io_type="UPSCALE_MODEL")
class UpscaleModel(ComfyTypeIO):
if TYPE_CHECKING:
Type = ImageModelDescriptor
@comfytype(io_type="AUDIO")
class Audio(ComfyTypeIO):
class AudioDict(TypedDict):
waveform: torch.Tensor
sampler_rate: int
Type = AudioDict
@comfytype(io_type="VIDEO")
class Video(ComfyTypeIO):
if TYPE_CHECKING:
Type = VideoInput
@comfytype(io_type="SVG")
class SVG(ComfyTypeIO):
Type = Any # TODO: SVG class is defined in comfy_extras/nodes_images.py, causing circular reference; should be moved to somewhere else before referenced directly in v3
@comfytype(io_type="LORA_MODEL")
class LoraModel(ComfyTypeIO):
Type = dict[str, torch.Tensor]
@comfytype(io_type="LOSS_MAP")
class LossMap(ComfyTypeIO):
class LossMapDict(TypedDict):
loss: list[torch.Tensor]
Type = LossMapDict
@comfytype(io_type="VOXEL")
class Voxel(ComfyTypeIO):
Type = Any # TODO: VOXEL class is defined in comfy_extras/nodes_hunyuan3d.py; should be moved to somewhere else before referenced directly in v3
@comfytype(io_type="MESH")
class Mesh(ComfyTypeIO):
Type = Any # TODO: MESH class is defined in comfy_extras/nodes_hunyuan3d.py; should be moved to somewhere else before referenced directly in v3
@comfytype(io_type="HOOKS")
class Hooks(ComfyTypeIO):
if TYPE_CHECKING:
Type = HookGroup
@comfytype(io_type="HOOK_KEYFRAMES")
class HookKeyframes(ComfyTypeIO):
if TYPE_CHECKING:
Type = HookKeyframeGroup
@comfytype(io_type="TIMESTEPS_RANGE")
class TimestepsRange(ComfyTypeIO):
'''Range defined by start and endpoint, between 0.0 and 1.0.'''
Type = tuple[int, int]
@comfytype(io_type="LATENT_OPERATION")
class LatentOperation(ComfyTypeIO):
Type = Callable[[torch.Tensor], torch.Tensor]
@comfytype(io_type="FLOW_CONTROL")
class FlowControl(ComfyTypeIO):
# NOTE: only used in testing_nodes right now
Type = tuple[str, Any]
@comfytype(io_type="ACCUMULATION")
class Accumulation(ComfyTypeIO):
# NOTE: only used in testing_nodes right now
class AccumulationDict(TypedDict):
accum: list[Any]
Type = AccumulationDict
@comfytype(io_type="LOAD3D_CAMERA")
class Load3DCamera(ComfyTypeIO):
class CameraInfo(TypedDict):
position: dict[str, float | int]
target: dict[str, float | int]
zoom: int
cameraType: str
Type = CameraInfo
@comfytype(io_type="LOAD_3D")
class Load3D(ComfyTypeIO):
"""3D models are stored as a dictionary."""
class Model3DDict(TypedDict):
image: str
mask: str
normal: str
camera_info: Load3DCamera.CameraInfo
recording: NotRequired[str]
Type = Model3DDict
@comfytype(io_type="LOAD_3D_ANIMATION")
class Load3DAnimation(Load3D):
...
@comfytype(io_type="PHOTOMAKER")
class Photomaker(ComfyTypeIO):
Type = Any
@comfytype(io_type="POINT")
class Point(ComfyTypeIO):
Type = Any # NOTE: I couldn't find any references in core code to POINT io_type. Does this exist?
@comfytype(io_type="FACE_ANALYSIS")
class FaceAnalysis(ComfyTypeIO):
Type = Any # NOTE: I couldn't find any references in core code to POINT io_type. Does this exist?
@comfytype(io_type="BBOX")
class BBOX(ComfyTypeIO):
Type = Any # NOTE: I couldn't find any references in core code to POINT io_type. Does this exist?
@comfytype(io_type="SEGS")
class SEGS(ComfyTypeIO):
Type = Any # NOTE: I couldn't find any references in core code to POINT io_type. Does this exist?
@comfytype(io_type="*")
class AnyType(ComfyTypeIO):
Type = Any
@comfytype(io_type="MODEL_PATCH")
class MODEL_PATCH(ComfyTypeIO):
Type = Any
@comfytype(io_type="AUDIO_ENCODER")
class AudioEncoder(ComfyTypeIO):
Type = Any
@comfytype(io_type="AUDIO_ENCODER_OUTPUT")
class AudioEncoderOutput(ComfyTypeIO):
Type = Any
@comfytype(io_type="COMFY_MULTITYPED_V3")
class MultiType:
Type = Any
class Input(Input):
'''
Input that permits more than one input type; if `id` is an instance of `ComfyType.Input`, then that input will be used to create a widget (if applicable) with overridden values.
'''
def __init__(self, id: str | Input, types: list[type[_ComfyType] | _ComfyType], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None):
# if id is an Input, then use that Input with overridden values
self.input_override = None
if isinstance(id, Input):
self.input_override = copy.copy(id)
optional = id.optional if id.optional is True else optional
tooltip = id.tooltip if id.tooltip is not None else tooltip
display_name = id.display_name if id.display_name is not None else display_name
lazy = id.lazy if id.lazy is not None else lazy
id = id.id
# if is a widget input, make sure widget_type is set appropriately
if isinstance(self.input_override, WidgetInput):
self.input_override.widget_type = self.input_override.get_io_type()
super().__init__(id, display_name, optional, tooltip, lazy, extra_dict)
self._io_types = types
@property
def io_types(self) -> list[type[Input]]:
'''
Returns list of Input class types permitted.
'''
io_types = []
for x in self._io_types:
if not is_class(x):
io_types.append(type(x))
else:
io_types.append(x)
return io_types
def get_io_type(self):
# ensure types are unique and order is preserved
str_types = [x.io_type for x in self.io_types]
if self.input_override is not None:
str_types.insert(0, self.input_override.get_io_type())
return ",".join(list(dict.fromkeys(str_types)))
def as_dict(self):
if self.input_override is not None:
return self.input_override.as_dict() | super().as_dict()
else:
return super().as_dict()
class DynamicInput(Input, ABC):
'''
Abstract class for dynamic input registration.
'''
@abstractmethod
def get_dynamic(self) -> list[Input]:
...
class DynamicOutput(Output, ABC):
'''
Abstract class for dynamic output registration.
'''
def __init__(self, id: str=None, display_name: str=None, tooltip: str=None,
is_output_list=False):
super().__init__(id, display_name, tooltip, is_output_list)
@abstractmethod
def get_dynamic(self) -> list[Output]:
...
@comfytype(io_type="COMFY_AUTOGROW_V3")
class AutogrowDynamic(ComfyTypeI):
Type = list[Any]
class Input(DynamicInput):
def __init__(self, id: str, template_input: Input, min: int=1, max: int=None,
display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None):
super().__init__(id, display_name, optional, tooltip, lazy, extra_dict)
self.template_input = template_input
if min is not None:
assert(min >= 1)
if max is not None:
assert(max >= 1)
self.min = min
self.max = max
def get_dynamic(self) -> list[Input]:
curr_count = 1
new_inputs = []
for i in range(self.min):
new_input = copy.copy(self.template_input)
new_input.id = f"{new_input.id}{curr_count}_${self.id}_ag$"
if new_input.display_name is not None:
new_input.display_name = f"{new_input.display_name}{curr_count}"
new_input.optional = self.optional or new_input.optional
if isinstance(self.template_input, WidgetInput):
new_input.force_input = True
new_inputs.append(new_input)
curr_count += 1
# pretend to expand up to max
for i in range(curr_count-1, self.max):
new_input = copy.copy(self.template_input)
new_input.id = f"{new_input.id}{curr_count}_${self.id}_ag$"
if new_input.display_name is not None:
new_input.display_name = f"{new_input.display_name}{curr_count}"
new_input.optional = True
if isinstance(self.template_input, WidgetInput):
new_input.force_input = True
new_inputs.append(new_input)
curr_count += 1
return new_inputs
@comfytype(io_type="COMFY_COMBODYNAMIC_V3")
class ComboDynamic(ComfyTypeI):
class Input(DynamicInput):
def __init__(self, id: str):
pass
@comfytype(io_type="COMFY_MATCHTYPE_V3")
class MatchType(ComfyTypeIO):
class Template:
def __init__(self, template_id: str, allowed_types: _ComfyType | list[_ComfyType]):
self.template_id = template_id
self.allowed_types = [allowed_types] if isinstance(allowed_types, _ComfyType) else allowed_types
def as_dict(self):
return {
"template_id": self.template_id,
"allowed_types": "".join(t.io_type for t in self.allowed_types),
}
class Input(DynamicInput):
def __init__(self, id: str, template: MatchType.Template,
display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None, extra_dict=None):
super().__init__(id, display_name, optional, tooltip, lazy, extra_dict)
self.template = template
def get_dynamic(self) -> list[Input]:
return [self]
def as_dict(self):
return super().as_dict() | prune_dict({
"template": self.template.as_dict(),
})
class Output(DynamicOutput):
def __init__(self, id: str, template: MatchType.Template, display_name: str=None, tooltip: str=None,
is_output_list=False):
super().__init__(id, display_name, tooltip, is_output_list)
self.template = template
def get_dynamic(self) -> list[Output]:
return [self]
def as_dict(self):
return super().as_dict() | prune_dict({
"template": self.template.as_dict(),
})
class HiddenHolder:
def __init__(self, unique_id: str, prompt: Any,
extra_pnginfo: Any, dynprompt: Any,
auth_token_comfy_org: str, api_key_comfy_org: str, **kwargs):
self.unique_id = unique_id
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
self.prompt = prompt
"""PROMPT is the complete prompt sent by the client to the server. See the prompt object for a full description."""
self.extra_pnginfo = extra_pnginfo
"""EXTRA_PNGINFO is a dictionary that will be copied into the metadata of any .png files saved. Custom nodes can store additional information in this dictionary for saving (or as a way to communicate with a downstream node)."""
self.dynprompt = dynprompt
"""DYNPROMPT is an instance of comfy_execution.graph.DynamicPrompt. It differs from PROMPT in that it may mutate during the course of execution in response to Node Expansion."""
self.auth_token_comfy_org = auth_token_comfy_org
"""AUTH_TOKEN_COMFY_ORG is a token acquired from signing into a ComfyOrg account on frontend."""
self.api_key_comfy_org = api_key_comfy_org
"""API_KEY_COMFY_ORG is an API Key generated by ComfyOrg that allows skipping signing into a ComfyOrg account on frontend."""
def __getattr__(self, key: str):
'''If hidden variable not found, return None.'''
return None
@classmethod
def from_dict(cls, d: dict | None):
if d is None:
d = {}
return cls(
unique_id=d.get(Hidden.unique_id, None),
prompt=d.get(Hidden.prompt, None),
extra_pnginfo=d.get(Hidden.extra_pnginfo, None),
dynprompt=d.get(Hidden.dynprompt, None),
auth_token_comfy_org=d.get(Hidden.auth_token_comfy_org, None),
api_key_comfy_org=d.get(Hidden.api_key_comfy_org, None),
)
class Hidden(str, Enum):
'''
Enumerator for requesting hidden variables in nodes.
'''
unique_id = "UNIQUE_ID"
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
prompt = "PROMPT"
"""PROMPT is the complete prompt sent by the client to the server. See the prompt object for a full description."""
extra_pnginfo = "EXTRA_PNGINFO"
"""EXTRA_PNGINFO is a dictionary that will be copied into the metadata of any .png files saved. Custom nodes can store additional information in this dictionary for saving (or as a way to communicate with a downstream node)."""
dynprompt = "DYNPROMPT"
"""DYNPROMPT is an instance of comfy_execution.graph.DynamicPrompt. It differs from PROMPT in that it may mutate during the course of execution in response to Node Expansion."""
auth_token_comfy_org = "AUTH_TOKEN_COMFY_ORG"
"""AUTH_TOKEN_COMFY_ORG is a token acquired from signing into a ComfyOrg account on frontend."""
api_key_comfy_org = "API_KEY_COMFY_ORG"
"""API_KEY_COMFY_ORG is an API Key generated by ComfyOrg that allows skipping signing into a ComfyOrg account on frontend."""
@dataclass
class NodeInfoV1:
input: dict=None
input_order: dict[str, list[str]]=None
output: list[str]=None
output_is_list: list[bool]=None
output_name: list[str]=None
output_tooltips: list[str]=None
name: str=None
display_name: str=None
description: str=None
python_module: Any=None
category: str=None
output_node: bool=None
deprecated: bool=None
experimental: bool=None
api_node: bool=None
@dataclass
class NodeInfoV3:
input: dict=None
output: dict=None
hidden: list[str]=None
name: str=None
display_name: str=None
description: str=None
category: str=None
output_node: bool=None
deprecated: bool=None
experimental: bool=None
api_node: bool=None
@dataclass
class Schema:
"""Definition of V3 node properties."""
node_id: str
"""ID of node - should be globally unique. If this is a custom node, add a prefix or postfix to avoid name clashes."""
display_name: str = None
"""Display name of node."""
category: str = "sd"
"""The category of the node, as per the "Add Node" menu."""
inputs: list[Input]=None
outputs: list[Output]=None
hidden: list[Hidden]=None
description: str=""
"""Node description, shown as a tooltip when hovering over the node."""
is_input_list: bool = False
"""A flag indicating if this node implements the additional code necessary to deal with OUTPUT_IS_LIST nodes.
All inputs of ``type`` will become ``list[type]``, regardless of how many items are passed in. This also affects ``check_lazy_status``.
From the docs:
A node can also override the default input behaviour and receive the whole list in a single call. This is done by setting a class attribute `INPUT_IS_LIST` to ``True``.
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
"""
is_output_node: bool=False
"""Flags this node as an output node, causing any inputs it requires to be executed.
If a node is not connected to any output nodes, that node will not be executed. Usage::
From the docs:
By default, a node is not considered an output. Set ``OUTPUT_NODE = True`` to specify that it is.
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#output-node
"""
is_deprecated: bool=False
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
is_experimental: bool=False
"""Flags a node as experimental, informing users that it may change or not work as expected."""
is_api_node: bool=False
"""Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview."""
not_idempotent: bool=False
"""Flags a node as not idempotent; when True, the node will run and not reuse the cached outputs when identical inputs are provided on a different node in the graph."""
enable_expand: bool=False
"""Flags a node as expandable, allowing NodeOutput to include 'expand' property."""
def validate(self):
'''Validate the schema:
- verify ids on inputs and outputs are unique - both internally and in relation to each other
'''
input_ids = [i.id for i in self.inputs] if self.inputs is not None else []
output_ids = [o.id for o in self.outputs] if self.outputs is not None else []
input_set = set(input_ids)
output_set = set(output_ids)
issues = []
# verify ids are unique per list
if len(input_set) != len(input_ids):
issues.append(f"Input ids must be unique, but {[item for item, count in Counter(input_ids).items() if count > 1]} are not.")
if len(output_set) != len(output_ids):
issues.append(f"Output ids must be unique, but {[item for item, count in Counter(output_ids).items() if count > 1]} are not.")
# verify ids are unique between lists
intersection = input_set & output_set
if len(intersection) > 0:
issues.append(f"Ids must be unique between inputs and outputs, but {intersection} are not.")
if len(issues) > 0:
raise ValueError("\n".join(issues))
def finalize(self):
"""Add hidden based on selected schema options, and give outputs without ids default ids."""
# if is an api_node, will need key-related hidden
if self.is_api_node:
if self.hidden is None:
self.hidden = []
if Hidden.auth_token_comfy_org not in self.hidden:
self.hidden.append(Hidden.auth_token_comfy_org)
if Hidden.api_key_comfy_org not in self.hidden:
self.hidden.append(Hidden.api_key_comfy_org)
# if is an output_node, will need prompt and extra_pnginfo
if self.is_output_node:
if self.hidden is None:
self.hidden = []
if Hidden.prompt not in self.hidden:
self.hidden.append(Hidden.prompt)
if Hidden.extra_pnginfo not in self.hidden:
self.hidden.append(Hidden.extra_pnginfo)
# give outputs without ids default ids
if self.outputs is not None:
for i, output in enumerate(self.outputs):
if output.id is None:
output.id = f"_{i}_{output.io_type}_"
def get_v1_info(self, cls) -> NodeInfoV1:
# get V1 inputs
input = {
"required": {}
}
if self.inputs:
for i in self.inputs:
if isinstance(i, DynamicInput):
dynamic_inputs = i.get_dynamic()
for d in dynamic_inputs:
add_to_dict_v1(d, input)
else:
add_to_dict_v1(i, input)
if self.hidden:
for hidden in self.hidden:
input.setdefault("hidden", {})[hidden.name] = (hidden.value,)
# create separate lists from output fields
output = []
output_is_list = []
output_name = []
output_tooltips = []
if self.outputs:
for o in self.outputs:
output.append(o.io_type)
output_is_list.append(o.is_output_list)
output_name.append(o.display_name if o.display_name else o.io_type)
output_tooltips.append(o.tooltip if o.tooltip else None)
info = NodeInfoV1(
input=input,
input_order={key: list(value.keys()) for (key, value) in input.items()},
output=output,
output_is_list=output_is_list,
output_name=output_name,
output_tooltips=output_tooltips,
name=self.node_id,
display_name=self.display_name,
category=self.category,
description=self.description,
output_node=self.is_output_node,
deprecated=self.is_deprecated,
experimental=self.is_experimental,
api_node=self.is_api_node,
python_module=getattr(cls, "RELATIVE_PYTHON_MODULE", "nodes")
)
return info
def get_v3_info(self, cls) -> NodeInfoV3:
input_dict = {}
output_dict = {}
hidden_list = []
# TODO: make sure dynamic types will be handled correctly
if self.inputs:
for input in self.inputs:
add_to_dict_v3(input, input_dict)
if self.outputs:
for output in self.outputs:
add_to_dict_v3(output, output_dict)
if self.hidden:
for hidden in self.hidden:
hidden_list.append(hidden.value)
info = NodeInfoV3(
input=input_dict,
output=output_dict,
hidden=hidden_list,
name=self.node_id,
display_name=self.display_name,
description=self.description,
category=self.category,
output_node=self.is_output_node,
deprecated=self.is_deprecated,
experimental=self.is_experimental,
api_node=self.is_api_node,
python_module=getattr(cls, "RELATIVE_PYTHON_MODULE", "nodes")
)
return info
def add_to_dict_v1(i: Input, input: dict):
key = "optional" if i.optional else "required"
as_dict = i.as_dict()
# for v1, we don't want to include the optional key
as_dict.pop("optional", None)
input.setdefault(key, {})[i.id] = (i.get_io_type(), as_dict)
def add_to_dict_v3(io: Input | Output, d: dict):
d[io.id] = (io.get_io_type(), io.as_dict())
class _ComfyNodeBaseInternal(_ComfyNodeInternal):
"""Common base class for storing internal methods and properties; DO NOT USE for defining nodes."""
RELATIVE_PYTHON_MODULE = None
SCHEMA = None
# filled in during execution
resources: Resources = None
hidden: HiddenHolder = None
@classmethod
@abstractmethod
def define_schema(cls) -> Schema:
"""Override this function with one that returns a Schema instance."""
raise NotImplementedError
@classmethod
@abstractmethod
def execute(cls, **kwargs) -> NodeOutput:
"""Override this function with one that performs node's actions."""
raise NotImplementedError
@classmethod
def validate_inputs(cls, **kwargs) -> bool:
"""Optionally, define this function to validate inputs; equivalent to V1's VALIDATE_INPUTS."""
raise NotImplementedError
@classmethod
def fingerprint_inputs(cls, **kwargs) -> Any:
"""Optionally, define this function to fingerprint inputs; equivalent to V1's IS_CHANGED."""
raise NotImplementedError
@classmethod
def check_lazy_status(cls, **kwargs) -> list[str]:
"""Optionally, define this function to return a list of input names that should be evaluated.
This basic mixin impl. requires all inputs.
:kwargs: All node inputs will be included here. If the input is ``None``, it should be assumed that it has not yet been evaluated. \
When using ``INPUT_IS_LIST = True``, unevaluated will instead be ``(None,)``.
Params should match the nodes execution ``FUNCTION`` (self, and all inputs by name).
Will be executed repeatedly until it returns an empty list, or all requested items were already evaluated (and sent as params).
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lazy_evaluation#defining-check-lazy-status
"""
return [name for name in kwargs if kwargs[name] is None]
def __init__(self):
self.local_resources: ResourcesLocal = None
self.__class__.VALIDATE_CLASS()
@classmethod
def GET_BASE_CLASS(cls):
return _ComfyNodeBaseInternal
@final
@classmethod
def VALIDATE_CLASS(cls):
if first_real_override(cls, "define_schema") is None:
raise Exception(f"No define_schema function was defined for node class {cls.__name__}.")
if first_real_override(cls, "execute") is None:
raise Exception(f"No execute function was defined for node class {cls.__name__}.")
@classproperty
def FUNCTION(cls): # noqa
if inspect.iscoroutinefunction(cls.execute):
return "EXECUTE_NORMALIZED_ASYNC"
return "EXECUTE_NORMALIZED"
@final
@classmethod
def EXECUTE_NORMALIZED(cls, *args, **kwargs) -> NodeOutput:
to_return = cls.execute(*args, **kwargs)
if to_return is None:
to_return = NodeOutput()
elif isinstance(to_return, NodeOutput):
pass
elif isinstance(to_return, tuple):
to_return = NodeOutput(*to_return)
elif isinstance(to_return, dict):
to_return = NodeOutput.from_dict(to_return)
elif isinstance(to_return, ExecutionBlocker):
to_return = NodeOutput(block_execution=to_return.message)
else:
raise Exception(f"Invalid return type from node: {type(to_return)}")
if to_return.expand is not None and not cls.SCHEMA.enable_expand:
raise Exception(f"Node {cls.__name__} is not expandable, but expand included in NodeOutput; developer should set enable_expand=True on node's Schema to allow this.")
return to_return
@final
@classmethod
async def EXECUTE_NORMALIZED_ASYNC(cls, *args, **kwargs) -> NodeOutput:
to_return = await cls.execute(*args, **kwargs)
if to_return is None:
to_return = NodeOutput()
elif isinstance(to_return, NodeOutput):
pass
elif isinstance(to_return, tuple):
to_return = NodeOutput(*to_return)
elif isinstance(to_return, dict):
to_return = NodeOutput.from_dict(to_return)
elif isinstance(to_return, ExecutionBlocker):
to_return = NodeOutput(block_execution=to_return.message)
else:
raise Exception(f"Invalid return type from node: {type(to_return)}")
if to_return.expand is not None and not cls.SCHEMA.enable_expand:
raise Exception(f"Node {cls.__name__} is not expandable, but expand included in NodeOutput; developer should set enable_expand=True on node's Schema to allow this.")
return to_return
@final
@classmethod
def PREPARE_CLASS_CLONE(cls, hidden_inputs: dict) -> type[ComfyNode]:
"""Creates clone of real node class to prevent monkey-patching."""
c_type: type[ComfyNode] = cls if is_class(cls) else type(cls)
type_clone: type[ComfyNode] = shallow_clone_class(c_type)
# set hidden
type_clone.hidden = HiddenHolder.from_dict(hidden_inputs)
return type_clone
@final
@classmethod
def GET_NODE_INFO_V3(cls) -> dict[str, Any]:
schema = cls.GET_SCHEMA()
info = schema.get_v3_info(cls)
return asdict(info)
#############################################
# V1 Backwards Compatibility code
#--------------------------------------------
@final
@classmethod
def GET_NODE_INFO_V1(cls) -> dict[str, Any]:
schema = cls.GET_SCHEMA()
info = schema.get_v1_info(cls)
return asdict(info)
_DESCRIPTION = None
@final
@classproperty
def DESCRIPTION(cls): # noqa
if cls._DESCRIPTION is None:
cls.GET_SCHEMA()
return cls._DESCRIPTION
_CATEGORY = None
@final
@classproperty
def CATEGORY(cls): # noqa
if cls._CATEGORY is None:
cls.GET_SCHEMA()
return cls._CATEGORY
_EXPERIMENTAL = None
@final
@classproperty
def EXPERIMENTAL(cls): # noqa
if cls._EXPERIMENTAL is None:
cls.GET_SCHEMA()
return cls._EXPERIMENTAL
_DEPRECATED = None
@final
@classproperty
def DEPRECATED(cls): # noqa
if cls._DEPRECATED is None:
cls.GET_SCHEMA()
return cls._DEPRECATED
_API_NODE = None
@final
@classproperty
def API_NODE(cls): # noqa
if cls._API_NODE is None:
cls.GET_SCHEMA()
return cls._API_NODE
_OUTPUT_NODE = None
@final
@classproperty
def OUTPUT_NODE(cls): # noqa
if cls._OUTPUT_NODE is None:
cls.GET_SCHEMA()
return cls._OUTPUT_NODE
_INPUT_IS_LIST = None
@final
@classproperty
def INPUT_IS_LIST(cls): # noqa
if cls._INPUT_IS_LIST is None:
cls.GET_SCHEMA()
return cls._INPUT_IS_LIST
_OUTPUT_IS_LIST = None
@final
@classproperty
def OUTPUT_IS_LIST(cls): # noqa
if cls._OUTPUT_IS_LIST is None:
cls.GET_SCHEMA()
return cls._OUTPUT_IS_LIST
_RETURN_TYPES = None
@final
@classproperty
def RETURN_TYPES(cls): # noqa
if cls._RETURN_TYPES is None:
cls.GET_SCHEMA()
return cls._RETURN_TYPES
_RETURN_NAMES = None
@final
@classproperty
def RETURN_NAMES(cls): # noqa
if cls._RETURN_NAMES is None:
cls.GET_SCHEMA()
return cls._RETURN_NAMES
_OUTPUT_TOOLTIPS = None
@final
@classproperty
def OUTPUT_TOOLTIPS(cls): # noqa
if cls._OUTPUT_TOOLTIPS is None:
cls.GET_SCHEMA()
return cls._OUTPUT_TOOLTIPS
_NOT_IDEMPOTENT = None
@final
@classproperty
def NOT_IDEMPOTENT(cls): # noqa
if cls._NOT_IDEMPOTENT is None:
cls.GET_SCHEMA()
return cls._NOT_IDEMPOTENT
@final
@classmethod
def INPUT_TYPES(cls, include_hidden=True, return_schema=False) -> dict[str, dict] | tuple[dict[str, dict], Schema]:
schema = cls.FINALIZE_SCHEMA()
info = schema.get_v1_info(cls)
input = info.input
if not include_hidden:
input.pop("hidden", None)
if return_schema:
return input, schema
return input
@final
@classmethod
def FINALIZE_SCHEMA(cls):
"""Call define_schema and finalize it."""
schema = cls.define_schema()
schema.finalize()
return schema
@final
@classmethod
def GET_SCHEMA(cls) -> Schema:
"""Validate node class, finalize schema, validate schema, and set expected class properties."""
cls.VALIDATE_CLASS()
schema = cls.FINALIZE_SCHEMA()
schema.validate()
if cls._DESCRIPTION is None:
cls._DESCRIPTION = schema.description
if cls._CATEGORY is None:
cls._CATEGORY = schema.category
if cls._EXPERIMENTAL is None:
cls._EXPERIMENTAL = schema.is_experimental
if cls._DEPRECATED is None:
cls._DEPRECATED = schema.is_deprecated
if cls._API_NODE is None:
cls._API_NODE = schema.is_api_node
if cls._OUTPUT_NODE is None:
cls._OUTPUT_NODE = schema.is_output_node
if cls._INPUT_IS_LIST is None:
cls._INPUT_IS_LIST = schema.is_input_list
if cls._NOT_IDEMPOTENT is None:
cls._NOT_IDEMPOTENT = schema.not_idempotent
if cls._RETURN_TYPES is None:
output = []
output_name = []
output_is_list = []
output_tooltips = []
if schema.outputs:
for o in schema.outputs:
output.append(o.io_type)
output_name.append(o.display_name if o.display_name else o.io_type)
output_is_list.append(o.is_output_list)
output_tooltips.append(o.tooltip if o.tooltip else None)
cls._RETURN_TYPES = output
cls._RETURN_NAMES = output_name
cls._OUTPUT_IS_LIST = output_is_list
cls._OUTPUT_TOOLTIPS = output_tooltips
cls.SCHEMA = schema
return schema
#--------------------------------------------
#############################################
class ComfyNode(_ComfyNodeBaseInternal):
"""Common base class for all V3 nodes."""
@classmethod
@abstractmethod
def define_schema(cls) -> Schema:
"""Override this function with one that returns a Schema instance."""
raise NotImplementedError
@classmethod
@abstractmethod
def execute(cls, **kwargs) -> NodeOutput:
"""Override this function with one that performs node's actions."""
raise NotImplementedError
@classmethod
def validate_inputs(cls, **kwargs) -> bool:
"""Optionally, define this function to validate inputs; equivalent to V1's VALIDATE_INPUTS."""
raise NotImplementedError
@classmethod
def fingerprint_inputs(cls, **kwargs) -> Any:
"""Optionally, define this function to fingerprint inputs; equivalent to V1's IS_CHANGED."""
raise NotImplementedError
@classmethod
def check_lazy_status(cls, **kwargs) -> list[str]:
"""Optionally, define this function to return a list of input names that should be evaluated.
This basic mixin impl. requires all inputs.
:kwargs: All node inputs will be included here. If the input is ``None``, it should be assumed that it has not yet been evaluated. \
When using ``INPUT_IS_LIST = True``, unevaluated will instead be ``(None,)``.
Params should match the nodes execution ``FUNCTION`` (self, and all inputs by name).
Will be executed repeatedly until it returns an empty list, or all requested items were already evaluated (and sent as params).
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lazy_evaluation#defining-check-lazy-status
"""
return [name for name in kwargs if kwargs[name] is None]
@final
@classmethod
def GET_BASE_CLASS(cls):
"""DO NOT override this class. Will break things in execution.py."""
return ComfyNode
class NodeOutput(_NodeOutputInternal):
'''
Standardized output of a node; can pass in any number of args and/or a UIOutput into 'ui' kwarg.
'''
def __init__(self, *args: Any, ui: _UIOutput | dict=None, expand: dict=None, block_execution: str=None):
self.args = args
self.ui = ui
self.expand = expand
self.block_execution = block_execution
@property
def result(self):
return self.args if len(self.args) > 0 else None
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "NodeOutput":
args = ()
ui = None
expand = None
if "result" in data:
result = data["result"]
if isinstance(result, ExecutionBlocker):
return cls(block_execution=result.message)
args = result
if "ui" in data:
ui = data["ui"]
if "expand" in data:
expand = data["expand"]
return cls(args=args, ui=ui, expand=expand)
def __getitem__(self, index) -> Any:
return self.args[index]
class _UIOutput(ABC):
def __init__(self):
pass
@abstractmethod
def as_dict(self) -> dict:
...
class _IO:
FolderType = FolderType
UploadType = UploadType
RemoteOptions = RemoteOptions
NumberDisplay = NumberDisplay
comfytype = staticmethod(comfytype)
Custom = staticmethod(Custom)
Input = Input
WidgetInput = WidgetInput
Output = Output
ComfyTypeI = ComfyTypeI
ComfyTypeIO = ComfyTypeIO
#---------------------------------
# Supported Types
Boolean = Boolean
Int = Int
Float = Float
String = String
Combo = Combo
MultiCombo = MultiCombo
Image = Image
WanCameraEmbedding = WanCameraEmbedding
Webcam = Webcam
Mask = Mask
Latent = Latent
Conditioning = Conditioning
Sampler = Sampler
Sigmas = Sigmas
Noise = Noise
Guider = Guider
Clip = Clip
ControlNet = ControlNet
Vae = Vae
Model = Model
ClipVision = ClipVision
ClipVisionOutput = ClipVisionOutput
AudioEncoderOutput = AudioEncoderOutput
StyleModel = StyleModel
Gligen = Gligen
UpscaleModel = UpscaleModel
Audio = Audio
Video = Video
SVG = SVG
LoraModel = LoraModel
LossMap = LossMap
Voxel = Voxel
Mesh = Mesh
Hooks = Hooks
HookKeyframes = HookKeyframes
TimestepsRange = TimestepsRange
LatentOperation = LatentOperation
FlowControl = FlowControl
Accumulation = Accumulation
Load3DCamera = Load3DCamera
Load3D = Load3D
Load3DAnimation = Load3DAnimation
Photomaker = Photomaker
Point = Point
FaceAnalysis = FaceAnalysis
BBOX = BBOX
SEGS = SEGS
AnyType = AnyType
MultiType = MultiType
#---------------------------------
HiddenHolder = HiddenHolder
Hidden = Hidden
NodeInfoV1 = NodeInfoV1
NodeInfoV3 = NodeInfoV3
Schema = Schema
ComfyNode = ComfyNode
NodeOutput = NodeOutput
add_to_dict_v1 = staticmethod(add_to_dict_v1)
add_to_dict_v3 = staticmethod(add_to_dict_v3)
|