Spaces:
Running
Running
Update jobs/process/TrainVAEProcess.py
Browse files- jobs/process/TrainVAEProcess.py +307 -34
jobs/process/TrainVAEProcess.py
CHANGED
|
@@ -7,6 +7,7 @@ from collections import OrderedDict
|
|
| 7 |
|
| 8 |
from PIL import Image
|
| 9 |
from PIL.ImageOps import exif_transpose
|
|
|
|
| 10 |
from safetensors.torch import save_file, load_file
|
| 11 |
from torch.utils.data import DataLoader, ConcatDataset
|
| 12 |
import torch
|
|
@@ -17,18 +18,22 @@ from jobs.process import BaseTrainProcess
|
|
| 17 |
from toolkit.image_utils import show_tensors
|
| 18 |
from toolkit.kohya_model_util import load_vae, convert_diffusers_back_to_ldm
|
| 19 |
from toolkit.data_loader import ImageDataset
|
| 20 |
-
from toolkit.losses import ComparativeTotalVariation, get_gradient_penalty, PatternLoss
|
| 21 |
from toolkit.metadata import get_meta_for_safetensors
|
| 22 |
from toolkit.optimizer import get_optimizer
|
| 23 |
from toolkit.style import get_style_model_and_losses
|
| 24 |
from toolkit.train_tools import get_torch_dtype
|
| 25 |
from diffusers import AutoencoderKL
|
| 26 |
from tqdm import tqdm
|
|
|
|
|
|
|
| 27 |
import time
|
| 28 |
import numpy as np
|
| 29 |
-
from .models.
|
| 30 |
from torchvision.transforms import Resize
|
| 31 |
import lpips
|
|
|
|
|
|
|
| 32 |
|
| 33 |
IMAGE_TRANSFORMS = transforms.Compose(
|
| 34 |
[
|
|
@@ -42,13 +47,21 @@ def unnormalize(tensor):
|
|
| 42 |
return (tensor / 2 + 0.5).clamp(0, 1)
|
| 43 |
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
class TrainVAEProcess(BaseTrainProcess):
|
| 46 |
def __init__(self, process_id: int, job, config: OrderedDict):
|
| 47 |
super().__init__(process_id, job, config)
|
| 48 |
self.data_loader = None
|
| 49 |
self.vae = None
|
| 50 |
self.device = self.get_conf('device', self.job.device)
|
| 51 |
-
self.vae_path = self.get_conf('vae_path',
|
|
|
|
| 52 |
self.datasets_objects = self.get_conf('datasets', required=True)
|
| 53 |
self.batch_size = self.get_conf('batch_size', 1, as_type=int)
|
| 54 |
self.resolution = self.get_conf('resolution', 256, as_type=int)
|
|
@@ -65,11 +78,25 @@ class TrainVAEProcess(BaseTrainProcess):
|
|
| 65 |
self.content_weight = self.get_conf('content_weight', 0, as_type=float)
|
| 66 |
self.kld_weight = self.get_conf('kld_weight', 0, as_type=float)
|
| 67 |
self.mse_weight = self.get_conf('mse_weight', 1e0, as_type=float)
|
| 68 |
-
self.
|
|
|
|
|
|
|
|
|
|
| 69 |
self.lpips_weight = self.get_conf('lpips_weight', 1e0, as_type=float)
|
| 70 |
self.critic_weight = self.get_conf('critic_weight', 1, as_type=float)
|
| 71 |
-
self.pattern_weight = self.get_conf('pattern_weight',
|
| 72 |
self.optimizer_params = self.get_conf('optimizer_params', {})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
self.blocks_to_train = self.get_conf('blocks_to_train', ['all'])
|
| 75 |
self.torch_dtype = get_torch_dtype(self.dtype)
|
|
@@ -133,7 +160,11 @@ class TrainVAEProcess(BaseTrainProcess):
|
|
| 133 |
for dataset in self.datasets_objects:
|
| 134 |
print(f" - Dataset: {dataset['path']}")
|
| 135 |
ds = copy.copy(dataset)
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
image_dataset = ImageDataset(ds)
|
| 138 |
datasets.append(image_dataset)
|
| 139 |
|
|
@@ -142,7 +173,7 @@ class TrainVAEProcess(BaseTrainProcess):
|
|
| 142 |
concatenated_dataset,
|
| 143 |
batch_size=self.batch_size,
|
| 144 |
shuffle=True,
|
| 145 |
-
num_workers=
|
| 146 |
)
|
| 147 |
|
| 148 |
def remove_oldest_checkpoint(self):
|
|
@@ -153,6 +184,13 @@ class TrainVAEProcess(BaseTrainProcess):
|
|
| 153 |
for folder in folders[:-max_to_keep]:
|
| 154 |
print(f"Removing {folder}")
|
| 155 |
shutil.rmtree(folder)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
def setup_vgg19(self):
|
| 158 |
if self.vgg_19 is None:
|
|
@@ -218,6 +256,62 @@ class TrainVAEProcess(BaseTrainProcess):
|
|
| 218 |
else:
|
| 219 |
return torch.tensor(0.0, device=self.device)
|
| 220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
def get_tv_loss(self, pred, target):
|
| 222 |
if self.tv_weight > 0:
|
| 223 |
get_tv_loss = ComparativeTotalVariation()
|
|
@@ -277,7 +371,39 @@ class TrainVAEProcess(BaseTrainProcess):
|
|
| 277 |
input_img = img
|
| 278 |
img = IMAGE_TRANSFORMS(img).unsqueeze(0).to(self.device, dtype=self.torch_dtype)
|
| 279 |
img = img
|
| 280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
decoded = (decoded / 2 + 0.5).clamp(0, 1)
|
| 282 |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
| 283 |
decoded = decoded.cpu().permute(0, 2, 3, 1).squeeze(0).float().numpy()
|
|
@@ -289,9 +415,10 @@ class TrainVAEProcess(BaseTrainProcess):
|
|
| 289 |
input_img = input_img.resize((self.resolution, self.resolution))
|
| 290 |
decoded = decoded.resize((self.resolution, self.resolution))
|
| 291 |
|
| 292 |
-
output_img = Image.new('RGB', (self.resolution *
|
| 293 |
output_img.paste(input_img, (0, 0))
|
| 294 |
output_img.paste(decoded, (self.resolution, 0))
|
|
|
|
| 295 |
|
| 296 |
scale_up = 2
|
| 297 |
if output_img.height <= 300:
|
|
@@ -326,12 +453,20 @@ class TrainVAEProcess(BaseTrainProcess):
|
|
| 326 |
self.print(f"Loading VAE")
|
| 327 |
self.print(f" - Loading VAE: {path_to_load}")
|
| 328 |
if self.vae is None:
|
| 329 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
|
| 331 |
# set decoder to train
|
| 332 |
self.vae.to(self.device, dtype=self.torch_dtype)
|
| 333 |
-
self.
|
| 334 |
-
|
|
|
|
|
|
|
|
|
|
| 335 |
self.vae.decoder.train()
|
| 336 |
self.vae_scale_factor = 2 ** (len(self.vae.config['block_out_channels']) - 1)
|
| 337 |
|
|
@@ -374,6 +509,10 @@ class TrainVAEProcess(BaseTrainProcess):
|
|
| 374 |
if train_all:
|
| 375 |
params = list(self.vae.decoder.parameters())
|
| 376 |
self.vae.decoder.requires_grad_(True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
else:
|
| 378 |
# mid_block
|
| 379 |
if train_all or 'mid_block' in self.blocks_to_train:
|
|
@@ -388,12 +527,13 @@ class TrainVAEProcess(BaseTrainProcess):
|
|
| 388 |
params += list(self.vae.decoder.conv_out.parameters())
|
| 389 |
self.vae.decoder.conv_out.requires_grad_(True)
|
| 390 |
|
| 391 |
-
if self.style_weight > 0 or self.content_weight > 0
|
| 392 |
self.setup_vgg19()
|
| 393 |
-
self.vgg_19.requires_grad_(False)
|
| 394 |
self.vgg_19.eval()
|
| 395 |
-
|
| 396 |
-
|
|
|
|
| 397 |
|
| 398 |
if self.lpips_weight > 0 and self.lpips_loss is None:
|
| 399 |
# self.lpips_loss = lpips.LPIPS(net='vgg')
|
|
@@ -426,6 +566,9 @@ class TrainVAEProcess(BaseTrainProcess):
|
|
| 426 |
"style": [],
|
| 427 |
"content": [],
|
| 428 |
"mse": [],
|
|
|
|
|
|
|
|
|
|
| 429 |
"kl": [],
|
| 430 |
"tv": [],
|
| 431 |
"ptn": [],
|
|
@@ -435,6 +578,9 @@ class TrainVAEProcess(BaseTrainProcess):
|
|
| 435 |
epoch_losses = copy.deepcopy(blank_losses)
|
| 436 |
log_losses = copy.deepcopy(blank_losses)
|
| 437 |
# range start at self.epoch_num go to self.epochs
|
|
|
|
|
|
|
|
|
|
| 438 |
for epoch in range(self.epoch_num, self.epochs, 1):
|
| 439 |
if self.step_num >= self.max_steps:
|
| 440 |
break
|
|
@@ -442,8 +588,20 @@ class TrainVAEProcess(BaseTrainProcess):
|
|
| 442 |
if self.step_num >= self.max_steps:
|
| 443 |
break
|
| 444 |
with torch.no_grad():
|
| 445 |
-
|
| 446 |
batch = batch.to(self.device, dtype=self.torch_dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 447 |
|
| 448 |
# resize so it matches size of vae evenly
|
| 449 |
if batch.shape[2] % self.vae_scale_factor != 0 or batch.shape[3] % self.vae_scale_factor != 0:
|
|
@@ -451,27 +609,92 @@ class TrainVAEProcess(BaseTrainProcess):
|
|
| 451 |
batch.shape[3] // self.vae_scale_factor * self.vae_scale_factor))(batch)
|
| 452 |
|
| 453 |
# forward pass
|
|
|
|
|
|
|
| 454 |
dgd = self.vae.encode(batch).latent_dist
|
| 455 |
mu, logvar = dgd.mean, dgd.logvar
|
| 456 |
latents = dgd.sample()
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 466 |
|
| 467 |
# Run through VGG19
|
| 468 |
-
if self.style_weight > 0 or self.content_weight > 0
|
| 469 |
stacked = torch.cat([pred, batch], dim=0)
|
| 470 |
stacked = (stacked / 2 + 0.5).clamp(0, 1)
|
| 471 |
self.vgg_19(stacked)
|
| 472 |
|
| 473 |
if self.use_critic:
|
| 474 |
-
|
|
|
|
| 475 |
else:
|
| 476 |
critic_d_loss = 0.0
|
| 477 |
|
|
@@ -489,7 +712,8 @@ class TrainVAEProcess(BaseTrainProcess):
|
|
| 489 |
tv_loss = self.get_tv_loss(pred, batch) * self.tv_weight
|
| 490 |
pattern_loss = self.get_pattern_loss(pred, batch) * self.pattern_weight
|
| 491 |
if self.use_critic:
|
| 492 |
-
|
|
|
|
| 493 |
|
| 494 |
# do not let abs critic gen loss be higher than abs lpips * 0.1 if using it
|
| 495 |
if self.lpips_weight > 0:
|
|
@@ -502,8 +726,42 @@ class TrainVAEProcess(BaseTrainProcess):
|
|
| 502 |
critic_gen_loss *= crit_g_scaler
|
| 503 |
else:
|
| 504 |
critic_gen_loss = torch.tensor(0.0, device=self.device, dtype=self.torch_dtype)
|
| 505 |
-
|
| 506 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 507 |
|
| 508 |
# Backward pass and optimization
|
| 509 |
optimizer.zero_grad()
|
|
@@ -533,8 +791,17 @@ class TrainVAEProcess(BaseTrainProcess):
|
|
| 533 |
loss_string += f" crG: {critic_gen_loss.item():.2e}"
|
| 534 |
if self.use_critic:
|
| 535 |
loss_string += f" crD: {critic_d_loss:.2e}"
|
| 536 |
-
|
| 537 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 538 |
self.optimizer_type.lower().startswith('prodigy'):
|
| 539 |
learning_rate = (
|
| 540 |
optimizer.param_groups[0]["d"] *
|
|
@@ -562,6 +829,9 @@ class TrainVAEProcess(BaseTrainProcess):
|
|
| 562 |
epoch_losses["ptn"].append(pattern_loss.item())
|
| 563 |
epoch_losses["crG"].append(critic_gen_loss.item())
|
| 564 |
epoch_losses["crD"].append(critic_d_loss)
|
|
|
|
|
|
|
|
|
|
| 565 |
|
| 566 |
log_losses["total"].append(loss_value)
|
| 567 |
log_losses["lpips"].append(lpips_loss.item())
|
|
@@ -573,6 +843,9 @@ class TrainVAEProcess(BaseTrainProcess):
|
|
| 573 |
log_losses["ptn"].append(pattern_loss.item())
|
| 574 |
log_losses["crG"].append(critic_gen_loss.item())
|
| 575 |
log_losses["crD"].append(critic_d_loss)
|
|
|
|
|
|
|
|
|
|
| 576 |
|
| 577 |
# don't do on first step
|
| 578 |
if self.step_num != start_step:
|
|
@@ -609,4 +882,4 @@ class TrainVAEProcess(BaseTrainProcess):
|
|
| 609 |
# reset epoch losses
|
| 610 |
epoch_losses = copy.deepcopy(blank_losses)
|
| 611 |
|
| 612 |
-
self.save()
|
|
|
|
| 7 |
|
| 8 |
from PIL import Image
|
| 9 |
from PIL.ImageOps import exif_transpose
|
| 10 |
+
from einops import rearrange
|
| 11 |
from safetensors.torch import save_file, load_file
|
| 12 |
from torch.utils.data import DataLoader, ConcatDataset
|
| 13 |
import torch
|
|
|
|
| 18 |
from toolkit.image_utils import show_tensors
|
| 19 |
from toolkit.kohya_model_util import load_vae, convert_diffusers_back_to_ldm
|
| 20 |
from toolkit.data_loader import ImageDataset
|
| 21 |
+
from toolkit.losses import ComparativeTotalVariation, get_gradient_penalty, PatternLoss, total_variation
|
| 22 |
from toolkit.metadata import get_meta_for_safetensors
|
| 23 |
from toolkit.optimizer import get_optimizer
|
| 24 |
from toolkit.style import get_style_model_and_losses
|
| 25 |
from toolkit.train_tools import get_torch_dtype
|
| 26 |
from diffusers import AutoencoderKL
|
| 27 |
from tqdm import tqdm
|
| 28 |
+
import math
|
| 29 |
+
import torchvision.utils
|
| 30 |
import time
|
| 31 |
import numpy as np
|
| 32 |
+
from .models.critic import Critic
|
| 33 |
from torchvision.transforms import Resize
|
| 34 |
import lpips
|
| 35 |
+
import random
|
| 36 |
+
import traceback
|
| 37 |
|
| 38 |
IMAGE_TRANSFORMS = transforms.Compose(
|
| 39 |
[
|
|
|
|
| 47 |
return (tensor / 2 + 0.5).clamp(0, 1)
|
| 48 |
|
| 49 |
|
| 50 |
+
def channel_dropout(x, p=0.5):
|
| 51 |
+
keep_prob = 1 - p
|
| 52 |
+
mask = torch.rand(x.size(0), x.size(1), 1, 1, device=x.device, dtype=x.dtype) < keep_prob
|
| 53 |
+
mask = mask / keep_prob # scale
|
| 54 |
+
return x * mask
|
| 55 |
+
|
| 56 |
+
|
| 57 |
class TrainVAEProcess(BaseTrainProcess):
|
| 58 |
def __init__(self, process_id: int, job, config: OrderedDict):
|
| 59 |
super().__init__(process_id, job, config)
|
| 60 |
self.data_loader = None
|
| 61 |
self.vae = None
|
| 62 |
self.device = self.get_conf('device', self.job.device)
|
| 63 |
+
self.vae_path = self.get_conf('vae_path', None)
|
| 64 |
+
self.eq_vae = self.get_conf('eq_vae', False)
|
| 65 |
self.datasets_objects = self.get_conf('datasets', required=True)
|
| 66 |
self.batch_size = self.get_conf('batch_size', 1, as_type=int)
|
| 67 |
self.resolution = self.get_conf('resolution', 256, as_type=int)
|
|
|
|
| 78 |
self.content_weight = self.get_conf('content_weight', 0, as_type=float)
|
| 79 |
self.kld_weight = self.get_conf('kld_weight', 0, as_type=float)
|
| 80 |
self.mse_weight = self.get_conf('mse_weight', 1e0, as_type=float)
|
| 81 |
+
self.mv_loss_weight = self.get_conf('mv_loss_weight', 0, as_type=float)
|
| 82 |
+
self.tv_weight = self.get_conf('tv_weight', 0, as_type=float)
|
| 83 |
+
self.ltv_weight = self.get_conf('ltv_weight', 0, as_type=float)
|
| 84 |
+
self.lpm_weight = self.get_conf('lpm_weight', 0, as_type=float) # latent pixel matching
|
| 85 |
self.lpips_weight = self.get_conf('lpips_weight', 1e0, as_type=float)
|
| 86 |
self.critic_weight = self.get_conf('critic_weight', 1, as_type=float)
|
| 87 |
+
self.pattern_weight = self.get_conf('pattern_weight', 0, as_type=float)
|
| 88 |
self.optimizer_params = self.get_conf('optimizer_params', {})
|
| 89 |
+
self.vae_config = self.get_conf('vae_config', None)
|
| 90 |
+
self.dropout = self.get_conf('dropout', 0.0, as_type=float)
|
| 91 |
+
self.train_encoder = self.get_conf('train_encoder', False, as_type=bool)
|
| 92 |
+
self.random_scaling = self.get_conf('random_scaling', False, as_type=bool)
|
| 93 |
+
|
| 94 |
+
if not self.train_encoder:
|
| 95 |
+
# remove losses that only target encoder
|
| 96 |
+
self.kld_weight = 0
|
| 97 |
+
self.mv_loss_weight = 0
|
| 98 |
+
self.ltv_weight = 0
|
| 99 |
+
self.lpm_weight = 0
|
| 100 |
|
| 101 |
self.blocks_to_train = self.get_conf('blocks_to_train', ['all'])
|
| 102 |
self.torch_dtype = get_torch_dtype(self.dtype)
|
|
|
|
| 160 |
for dataset in self.datasets_objects:
|
| 161 |
print(f" - Dataset: {dataset['path']}")
|
| 162 |
ds = copy.copy(dataset)
|
| 163 |
+
dataset_res = self.resolution
|
| 164 |
+
if self.random_scaling:
|
| 165 |
+
# scale 2x to allow for random scaling
|
| 166 |
+
dataset_res = int(dataset_res * 2)
|
| 167 |
+
ds['resolution'] = dataset_res
|
| 168 |
image_dataset = ImageDataset(ds)
|
| 169 |
datasets.append(image_dataset)
|
| 170 |
|
|
|
|
| 173 |
concatenated_dataset,
|
| 174 |
batch_size=self.batch_size,
|
| 175 |
shuffle=True,
|
| 176 |
+
num_workers=16
|
| 177 |
)
|
| 178 |
|
| 179 |
def remove_oldest_checkpoint(self):
|
|
|
|
| 184 |
for folder in folders[:-max_to_keep]:
|
| 185 |
print(f"Removing {folder}")
|
| 186 |
shutil.rmtree(folder)
|
| 187 |
+
# also handle CRITIC_vae_42_000000500.safetensors format for critic
|
| 188 |
+
critic_files = glob.glob(os.path.join(self.save_root, f"CRITIC_{self.job.name}*.safetensors"))
|
| 189 |
+
if len(critic_files) > max_to_keep:
|
| 190 |
+
critic_files.sort(key=os.path.getmtime)
|
| 191 |
+
for file in critic_files[:-max_to_keep]:
|
| 192 |
+
print(f"Removing {file}")
|
| 193 |
+
os.remove(file)
|
| 194 |
|
| 195 |
def setup_vgg19(self):
|
| 196 |
if self.vgg_19 is None:
|
|
|
|
| 256 |
else:
|
| 257 |
return torch.tensor(0.0, device=self.device)
|
| 258 |
|
| 259 |
+
def get_mean_variance_loss(self, latents: torch.Tensor):
|
| 260 |
+
if self.mv_loss_weight > 0:
|
| 261 |
+
# collapse rows into channels
|
| 262 |
+
latents_col = rearrange(latents, 'b c h (gw w) -> b (c gw) h w', gw=latents.shape[-1])
|
| 263 |
+
mean_col = latents_col.mean(dim=(2, 3), keepdim=True)
|
| 264 |
+
std_col = latents_col.std(dim=(2, 3), keepdim=True, unbiased=False)
|
| 265 |
+
mean_loss_col = (mean_col ** 2).mean()
|
| 266 |
+
std_loss_col = ((std_col - 1) ** 2).mean()
|
| 267 |
+
|
| 268 |
+
# collapse columns into channels
|
| 269 |
+
latents_row = rearrange(latents, 'b c (gh h) w -> b (c gh) h w', gh=latents.shape[-2])
|
| 270 |
+
mean_row = latents_row.mean(dim=(2, 3), keepdim=True)
|
| 271 |
+
std_row = latents_row.std(dim=(2, 3), keepdim=True, unbiased=False)
|
| 272 |
+
mean_loss_row = (mean_row ** 2).mean()
|
| 273 |
+
std_loss_row = ((std_row - 1) ** 2).mean()
|
| 274 |
+
|
| 275 |
+
# do a global one
|
| 276 |
+
|
| 277 |
+
mean = latents.mean(dim=(2, 3), keepdim=True)
|
| 278 |
+
std = latents.std(dim=(2, 3), keepdim=True, unbiased=False)
|
| 279 |
+
mean_loss_global = (mean ** 2).mean()
|
| 280 |
+
std_loss_global = ((std - 1) ** 2).mean()
|
| 281 |
+
|
| 282 |
+
return (mean_loss_col + std_loss_col + mean_loss_row + std_loss_row + mean_loss_global + std_loss_global) / 3
|
| 283 |
+
else:
|
| 284 |
+
return torch.tensor(0.0, device=self.device)
|
| 285 |
+
|
| 286 |
+
def get_ltv_loss(self, latent):
|
| 287 |
+
# loss to reduce the latent space variance
|
| 288 |
+
if self.ltv_weight > 0:
|
| 289 |
+
return total_variation(latent).mean()
|
| 290 |
+
else:
|
| 291 |
+
return torch.tensor(0.0, device=self.device)
|
| 292 |
+
|
| 293 |
+
def get_latent_pixel_matching_loss(self, latent, pixels):
|
| 294 |
+
if self.lpm_weight > 0:
|
| 295 |
+
with torch.no_grad():
|
| 296 |
+
pixels = pixels.to(latent.device, dtype=latent.dtype)
|
| 297 |
+
# resize down to latent size
|
| 298 |
+
pixels = torch.nn.functional.interpolate(pixels, size=(latent.shape[2], latent.shape[3]), mode='bilinear', align_corners=False)
|
| 299 |
+
|
| 300 |
+
# mean the color channel and then expand to latent size
|
| 301 |
+
pixels = pixels.mean(dim=1, keepdim=True)
|
| 302 |
+
pixels = pixels.repeat(1, latent.shape[1], 1, 1)
|
| 303 |
+
# match the mean std of latent
|
| 304 |
+
latent_mean = latent.mean(dim=(2, 3), keepdim=True)
|
| 305 |
+
latent_std = latent.std(dim=(2, 3), keepdim=True)
|
| 306 |
+
pixels_mean = pixels.mean(dim=(2, 3), keepdim=True)
|
| 307 |
+
pixels_std = pixels.std(dim=(2, 3), keepdim=True)
|
| 308 |
+
pixels = (pixels - pixels_mean) / (pixels_std + 1e-6) * latent_std + latent_mean
|
| 309 |
+
|
| 310 |
+
return torch.nn.functional.mse_loss(latent.float(), pixels.float())
|
| 311 |
+
|
| 312 |
+
else:
|
| 313 |
+
return torch.tensor(0.0, device=self.device)
|
| 314 |
+
|
| 315 |
def get_tv_loss(self, pred, target):
|
| 316 |
if self.tv_weight > 0:
|
| 317 |
get_tv_loss = ComparativeTotalVariation()
|
|
|
|
| 371 |
input_img = img
|
| 372 |
img = IMAGE_TRANSFORMS(img).unsqueeze(0).to(self.device, dtype=self.torch_dtype)
|
| 373 |
img = img
|
| 374 |
+
latent = self.vae.encode(img).latent_dist.sample()
|
| 375 |
+
|
| 376 |
+
latent_img = latent.clone()
|
| 377 |
+
bs, ch, h, w = latent_img.shape
|
| 378 |
+
grid_size = math.ceil(math.sqrt(ch))
|
| 379 |
+
pad = grid_size * grid_size - ch
|
| 380 |
+
|
| 381 |
+
# take first item in batch
|
| 382 |
+
latent_img = latent_img[0] # shape: (ch, h, w)
|
| 383 |
+
|
| 384 |
+
if pad > 0:
|
| 385 |
+
padding = torch.zeros((pad, h, w), dtype=latent_img.dtype, device=latent_img.device)
|
| 386 |
+
latent_img = torch.cat([latent_img, padding], dim=0)
|
| 387 |
+
|
| 388 |
+
# make grid
|
| 389 |
+
new_img = torch.zeros((1, grid_size * h, grid_size * w), dtype=latent_img.dtype, device=latent_img.device)
|
| 390 |
+
for x in range(grid_size):
|
| 391 |
+
for y in range(grid_size):
|
| 392 |
+
if x * grid_size + y < ch:
|
| 393 |
+
new_img[0, x * h:(x + 1) * h, y * w:(y + 1) * w] = latent_img[x * grid_size + y]
|
| 394 |
+
latent_img = new_img
|
| 395 |
+
# make rgb
|
| 396 |
+
latent_img = latent_img.repeat(3, 1, 1).unsqueeze(0)
|
| 397 |
+
latent_img = (latent_img / 2 + 0.5).clamp(0, 1)
|
| 398 |
+
|
| 399 |
+
# resize to 256x256
|
| 400 |
+
latent_img = torch.nn.functional.interpolate(latent_img, size=(self.resolution, self.resolution), mode='nearest')
|
| 401 |
+
latent_img = latent_img.squeeze(0).cpu().permute(1, 2, 0).float().numpy()
|
| 402 |
+
latent_img = (latent_img * 255).astype(np.uint8)
|
| 403 |
+
# convert to pillow image
|
| 404 |
+
latent_img = Image.fromarray(latent_img)
|
| 405 |
+
|
| 406 |
+
decoded = self.vae.decode(latent).sample
|
| 407 |
decoded = (decoded / 2 + 0.5).clamp(0, 1)
|
| 408 |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
| 409 |
decoded = decoded.cpu().permute(0, 2, 3, 1).squeeze(0).float().numpy()
|
|
|
|
| 415 |
input_img = input_img.resize((self.resolution, self.resolution))
|
| 416 |
decoded = decoded.resize((self.resolution, self.resolution))
|
| 417 |
|
| 418 |
+
output_img = Image.new('RGB', (self.resolution * 3, self.resolution))
|
| 419 |
output_img.paste(input_img, (0, 0))
|
| 420 |
output_img.paste(decoded, (self.resolution, 0))
|
| 421 |
+
output_img.paste(latent_img, (self.resolution * 2, 0))
|
| 422 |
|
| 423 |
scale_up = 2
|
| 424 |
if output_img.height <= 300:
|
|
|
|
| 453 |
self.print(f"Loading VAE")
|
| 454 |
self.print(f" - Loading VAE: {path_to_load}")
|
| 455 |
if self.vae is None:
|
| 456 |
+
if path_to_load is not None:
|
| 457 |
+
self.vae = AutoencoderKL.from_pretrained(path_to_load)
|
| 458 |
+
elif self.vae_config is not None:
|
| 459 |
+
self.vae = AutoencoderKL(**self.vae_config)
|
| 460 |
+
else:
|
| 461 |
+
raise ValueError('vae_path or ae_config must be specified')
|
| 462 |
|
| 463 |
# set decoder to train
|
| 464 |
self.vae.to(self.device, dtype=self.torch_dtype)
|
| 465 |
+
if self.eq_vae:
|
| 466 |
+
self.vae.encoder.train()
|
| 467 |
+
else:
|
| 468 |
+
self.vae.requires_grad_(False)
|
| 469 |
+
self.vae.eval()
|
| 470 |
self.vae.decoder.train()
|
| 471 |
self.vae_scale_factor = 2 ** (len(self.vae.config['block_out_channels']) - 1)
|
| 472 |
|
|
|
|
| 509 |
if train_all:
|
| 510 |
params = list(self.vae.decoder.parameters())
|
| 511 |
self.vae.decoder.requires_grad_(True)
|
| 512 |
+
if self.train_encoder:
|
| 513 |
+
# encoder
|
| 514 |
+
params += list(self.vae.encoder.parameters())
|
| 515 |
+
self.vae.encoder.requires_grad_(True)
|
| 516 |
else:
|
| 517 |
# mid_block
|
| 518 |
if train_all or 'mid_block' in self.blocks_to_train:
|
|
|
|
| 527 |
params += list(self.vae.decoder.conv_out.parameters())
|
| 528 |
self.vae.decoder.conv_out.requires_grad_(True)
|
| 529 |
|
| 530 |
+
if self.style_weight > 0 or self.content_weight > 0:
|
| 531 |
self.setup_vgg19()
|
| 532 |
+
# self.vgg_19.requires_grad_(False)
|
| 533 |
self.vgg_19.eval()
|
| 534 |
+
|
| 535 |
+
if self.use_critic:
|
| 536 |
+
self.critic.setup()
|
| 537 |
|
| 538 |
if self.lpips_weight > 0 and self.lpips_loss is None:
|
| 539 |
# self.lpips_loss = lpips.LPIPS(net='vgg')
|
|
|
|
| 566 |
"style": [],
|
| 567 |
"content": [],
|
| 568 |
"mse": [],
|
| 569 |
+
"mvl": [],
|
| 570 |
+
"ltv": [],
|
| 571 |
+
"lpm": [],
|
| 572 |
"kl": [],
|
| 573 |
"tv": [],
|
| 574 |
"ptn": [],
|
|
|
|
| 578 |
epoch_losses = copy.deepcopy(blank_losses)
|
| 579 |
log_losses = copy.deepcopy(blank_losses)
|
| 580 |
# range start at self.epoch_num go to self.epochs
|
| 581 |
+
|
| 582 |
+
latent_size = self.resolution // self.vae_scale_factor
|
| 583 |
+
|
| 584 |
for epoch in range(self.epoch_num, self.epochs, 1):
|
| 585 |
if self.step_num >= self.max_steps:
|
| 586 |
break
|
|
|
|
| 588 |
if self.step_num >= self.max_steps:
|
| 589 |
break
|
| 590 |
with torch.no_grad():
|
|
|
|
| 591 |
batch = batch.to(self.device, dtype=self.torch_dtype)
|
| 592 |
+
|
| 593 |
+
if self.random_scaling:
|
| 594 |
+
# only random scale 0.5 of the time
|
| 595 |
+
if random.random() < 0.5:
|
| 596 |
+
# random scale the batch
|
| 597 |
+
scale_factor = 0.25
|
| 598 |
+
else:
|
| 599 |
+
scale_factor = 0.5
|
| 600 |
+
new_size = (int(batch.shape[2] * scale_factor), int(batch.shape[3] * scale_factor))
|
| 601 |
+
# make sure it is vae divisible
|
| 602 |
+
new_size = (new_size[0] // self.vae_scale_factor * self.vae_scale_factor,
|
| 603 |
+
new_size[1] // self.vae_scale_factor * self.vae_scale_factor)
|
| 604 |
+
|
| 605 |
|
| 606 |
# resize so it matches size of vae evenly
|
| 607 |
if batch.shape[2] % self.vae_scale_factor != 0 or batch.shape[3] % self.vae_scale_factor != 0:
|
|
|
|
| 609 |
batch.shape[3] // self.vae_scale_factor * self.vae_scale_factor))(batch)
|
| 610 |
|
| 611 |
# forward pass
|
| 612 |
+
# grad only if eq_vae
|
| 613 |
+
with torch.set_grad_enabled(self.train_encoder):
|
| 614 |
dgd = self.vae.encode(batch).latent_dist
|
| 615 |
mu, logvar = dgd.mean, dgd.logvar
|
| 616 |
latents = dgd.sample()
|
| 617 |
+
|
| 618 |
+
if self.eq_vae:
|
| 619 |
+
# process flips, rotate, scale
|
| 620 |
+
latent_chunks = list(latents.chunk(latents.shape[0], dim=0))
|
| 621 |
+
batch_chunks = list(batch.chunk(batch.shape[0], dim=0))
|
| 622 |
+
out_chunks = []
|
| 623 |
+
for i in range(len(latent_chunks)):
|
| 624 |
+
try:
|
| 625 |
+
do_rotate = random.randint(0, 3)
|
| 626 |
+
do_flip_x = random.randint(0, 1)
|
| 627 |
+
do_flip_y = random.randint(0, 1)
|
| 628 |
+
do_scale = random.randint(0, 1)
|
| 629 |
+
if do_rotate > 0:
|
| 630 |
+
latent_chunks[i] = torch.rot90(latent_chunks[i], do_rotate, (2, 3))
|
| 631 |
+
batch_chunks[i] = torch.rot90(batch_chunks[i], do_rotate, (2, 3))
|
| 632 |
+
if do_flip_x > 0:
|
| 633 |
+
latent_chunks[i] = torch.flip(latent_chunks[i], [2])
|
| 634 |
+
batch_chunks[i] = torch.flip(batch_chunks[i], [2])
|
| 635 |
+
if do_flip_y > 0:
|
| 636 |
+
latent_chunks[i] = torch.flip(latent_chunks[i], [3])
|
| 637 |
+
batch_chunks[i] = torch.flip(batch_chunks[i], [3])
|
| 638 |
+
|
| 639 |
+
# resize latent to fit
|
| 640 |
+
if latent_chunks[i].shape[2] != latent_size or latent_chunks[i].shape[3] != latent_size:
|
| 641 |
+
latent_chunks[i] = torch.nn.functional.interpolate(latent_chunks[i], size=(latent_size, latent_size), mode='bilinear', align_corners=False)
|
| 642 |
+
|
| 643 |
+
# if do_scale > 0:
|
| 644 |
+
# scale = 2
|
| 645 |
+
# start_latent_h = latent_chunks[i].shape[2]
|
| 646 |
+
# start_latent_w = latent_chunks[i].shape[3]
|
| 647 |
+
# start_batch_h = batch_chunks[i].shape[2]
|
| 648 |
+
# start_batch_w = batch_chunks[i].shape[3]
|
| 649 |
+
# latent_chunks[i] = torch.nn.functional.interpolate(latent_chunks[i], scale_factor=scale, mode='bilinear', align_corners=False)
|
| 650 |
+
# batch_chunks[i] = torch.nn.functional.interpolate(batch_chunks[i], scale_factor=scale, mode='bilinear', align_corners=False)
|
| 651 |
+
# # random crop. latent is smaller than match but crops need to match
|
| 652 |
+
# latent_x = random.randint(0, latent_chunks[i].shape[2] - start_latent_h)
|
| 653 |
+
# latent_y = random.randint(0, latent_chunks[i].shape[3] - start_latent_w)
|
| 654 |
+
# batch_x = latent_x * self.vae_scale_factor
|
| 655 |
+
# batch_y = latent_y * self.vae_scale_factor
|
| 656 |
+
|
| 657 |
+
# # crop
|
| 658 |
+
# latent_chunks[i] = latent_chunks[i][:, :, latent_x:latent_x + start_latent_h, latent_y:latent_y + start_latent_w]
|
| 659 |
+
# batch_chunks[i] = batch_chunks[i][:, :, batch_x:batch_x + start_batch_h, batch_y:batch_y + start_batch_w]
|
| 660 |
+
except Exception as e:
|
| 661 |
+
print(f"Error processing image {i}: {e}")
|
| 662 |
+
traceback.print_exc()
|
| 663 |
+
raise e
|
| 664 |
+
out_chunks.append(latent_chunks[i])
|
| 665 |
+
latents = torch.cat(out_chunks, dim=0)
|
| 666 |
+
# do dropout
|
| 667 |
+
if self.dropout > 0:
|
| 668 |
+
forward_latents = channel_dropout(latents, self.dropout)
|
| 669 |
+
else:
|
| 670 |
+
forward_latents = latents
|
| 671 |
+
|
| 672 |
+
# resize batch to resolution if needed
|
| 673 |
+
if batch_chunks[0].shape[2] != self.resolution or batch_chunks[0].shape[3] != self.resolution:
|
| 674 |
+
batch_chunks = [torch.nn.functional.interpolate(b, size=(self.resolution, self.resolution), mode='bilinear', align_corners=False) for b in batch_chunks]
|
| 675 |
+
batch = torch.cat(batch_chunks, dim=0)
|
| 676 |
+
|
| 677 |
+
else:
|
| 678 |
+
latents.detach().requires_grad_(True)
|
| 679 |
+
forward_latents = latents
|
| 680 |
+
|
| 681 |
+
forward_latents = forward_latents.to(self.device, dtype=self.torch_dtype)
|
| 682 |
+
|
| 683 |
+
if not self.train_encoder:
|
| 684 |
+
# detach latents if not training encoder
|
| 685 |
+
forward_latents = forward_latents.detach()
|
| 686 |
+
|
| 687 |
+
pred = self.vae.decode(forward_latents).sample
|
| 688 |
|
| 689 |
# Run through VGG19
|
| 690 |
+
if self.style_weight > 0 or self.content_weight > 0:
|
| 691 |
stacked = torch.cat([pred, batch], dim=0)
|
| 692 |
stacked = (stacked / 2 + 0.5).clamp(0, 1)
|
| 693 |
self.vgg_19(stacked)
|
| 694 |
|
| 695 |
if self.use_critic:
|
| 696 |
+
stacked = torch.cat([pred, batch], dim=0)
|
| 697 |
+
critic_d_loss = self.critic.step(stacked.detach())
|
| 698 |
else:
|
| 699 |
critic_d_loss = 0.0
|
| 700 |
|
|
|
|
| 712 |
tv_loss = self.get_tv_loss(pred, batch) * self.tv_weight
|
| 713 |
pattern_loss = self.get_pattern_loss(pred, batch) * self.pattern_weight
|
| 714 |
if self.use_critic:
|
| 715 |
+
stacked = torch.cat([pred, batch], dim=0)
|
| 716 |
+
critic_gen_loss = self.critic.get_critic_loss(stacked) * self.critic_weight
|
| 717 |
|
| 718 |
# do not let abs critic gen loss be higher than abs lpips * 0.1 if using it
|
| 719 |
if self.lpips_weight > 0:
|
|
|
|
| 726 |
critic_gen_loss *= crit_g_scaler
|
| 727 |
else:
|
| 728 |
critic_gen_loss = torch.tensor(0.0, device=self.device, dtype=self.torch_dtype)
|
| 729 |
+
|
| 730 |
+
if self.mv_loss_weight > 0:
|
| 731 |
+
mv_loss = self.get_mean_variance_loss(latents) * self.mv_loss_weight
|
| 732 |
+
else:
|
| 733 |
+
mv_loss = torch.tensor(0.0, device=self.device, dtype=self.torch_dtype)
|
| 734 |
+
|
| 735 |
+
if self.ltv_weight > 0:
|
| 736 |
+
ltv_loss = self.get_ltv_loss(latents) * self.ltv_weight
|
| 737 |
+
else:
|
| 738 |
+
ltv_loss = torch.tensor(0.0, device=self.device, dtype=self.torch_dtype)
|
| 739 |
+
|
| 740 |
+
if self.lpm_weight > 0:
|
| 741 |
+
lpm_loss = self.get_latent_pixel_matching_loss(latents, batch) * self.lpm_weight
|
| 742 |
+
else:
|
| 743 |
+
lpm_loss = torch.tensor(0.0, device=self.device, dtype=self.torch_dtype)
|
| 744 |
+
|
| 745 |
+
loss = style_loss + content_loss + kld_loss + mse_loss + tv_loss + critic_gen_loss + pattern_loss + lpips_loss + mv_loss + ltv_loss
|
| 746 |
+
|
| 747 |
+
# check if loss is NaN or Inf
|
| 748 |
+
if torch.isnan(loss) or torch.isinf(loss):
|
| 749 |
+
self.print(f"Loss is NaN or Inf, stopping at step {self.step_num}")
|
| 750 |
+
self.print(f" - Style loss: {style_loss.item()}")
|
| 751 |
+
self.print(f" - Content loss: {content_loss.item()}")
|
| 752 |
+
self.print(f" - KLD loss: {kld_loss.item()}")
|
| 753 |
+
self.print(f" - MSE loss: {mse_loss.item()}")
|
| 754 |
+
self.print(f" - LPIPS loss: {lpips_loss.item()}")
|
| 755 |
+
self.print(f" - TV loss: {tv_loss.item()}")
|
| 756 |
+
self.print(f" - Pattern loss: {pattern_loss.item()}")
|
| 757 |
+
self.print(f" - Critic gen loss: {critic_gen_loss.item()}")
|
| 758 |
+
self.print(f" - Critic D loss: {critic_d_loss}")
|
| 759 |
+
self.print(f" - Mean variance loss: {mv_loss.item()}")
|
| 760 |
+
self.print(f" - Latent TV loss: {ltv_loss.item()}")
|
| 761 |
+
self.print(f" - Latent pixel matching loss: {lpm_loss.item()}")
|
| 762 |
+
self.print(f" - Total loss: {loss.item()}")
|
| 763 |
+
self.print(f" - Stopping training")
|
| 764 |
+
exit(1)
|
| 765 |
|
| 766 |
# Backward pass and optimization
|
| 767 |
optimizer.zero_grad()
|
|
|
|
| 791 |
loss_string += f" crG: {critic_gen_loss.item():.2e}"
|
| 792 |
if self.use_critic:
|
| 793 |
loss_string += f" crD: {critic_d_loss:.2e}"
|
| 794 |
+
if self.mv_loss_weight > 0:
|
| 795 |
+
loss_string += f" mvl: {mv_loss:.2e}"
|
| 796 |
+
if self.ltv_weight > 0:
|
| 797 |
+
loss_string += f" ltv: {ltv_loss:.2e}"
|
| 798 |
+
if self.lpm_weight > 0:
|
| 799 |
+
loss_string += f" lpm: {lpm_loss:.2e}"
|
| 800 |
+
|
| 801 |
+
|
| 802 |
+
if hasattr(optimizer, 'get_avg_learning_rate'):
|
| 803 |
+
learning_rate = optimizer.get_avg_learning_rate()
|
| 804 |
+
elif self.optimizer_type.startswith('dadaptation') or \
|
| 805 |
self.optimizer_type.lower().startswith('prodigy'):
|
| 806 |
learning_rate = (
|
| 807 |
optimizer.param_groups[0]["d"] *
|
|
|
|
| 829 |
epoch_losses["ptn"].append(pattern_loss.item())
|
| 830 |
epoch_losses["crG"].append(critic_gen_loss.item())
|
| 831 |
epoch_losses["crD"].append(critic_d_loss)
|
| 832 |
+
epoch_losses["mvl"].append(mv_loss.item())
|
| 833 |
+
epoch_losses["ltv"].append(ltv_loss.item())
|
| 834 |
+
epoch_losses["lpm"].append(lpm_loss.item())
|
| 835 |
|
| 836 |
log_losses["total"].append(loss_value)
|
| 837 |
log_losses["lpips"].append(lpips_loss.item())
|
|
|
|
| 843 |
log_losses["ptn"].append(pattern_loss.item())
|
| 844 |
log_losses["crG"].append(critic_gen_loss.item())
|
| 845 |
log_losses["crD"].append(critic_d_loss)
|
| 846 |
+
log_losses["mvl"].append(mv_loss.item())
|
| 847 |
+
log_losses["ltv"].append(ltv_loss.item())
|
| 848 |
+
log_losses["lpm"].append(lpm_loss.item())
|
| 849 |
|
| 850 |
# don't do on first step
|
| 851 |
if self.step_num != start_step:
|
|
|
|
| 882 |
# reset epoch losses
|
| 883 |
epoch_losses = copy.deepcopy(blank_losses)
|
| 884 |
|
| 885 |
+
self.save()
|