Spaces:
Running
Running
Create lora_trainer.py
Browse files- lora_trainer.py +430 -0
lora_trainer.py
ADDED
|
@@ -0,0 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from huggingface_hub import whoami
|
| 3 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 4 |
+
import sys
|
| 5 |
+
import spaces
|
| 6 |
+
# Add the current working directory to the Python path
|
| 7 |
+
sys.path.insert(0, os.getcwd())
|
| 8 |
+
|
| 9 |
+
import gradio as gr
|
| 10 |
+
from PIL import Image
|
| 11 |
+
import torch
|
| 12 |
+
import uuid
|
| 13 |
+
import os
|
| 14 |
+
import shutil
|
| 15 |
+
import json
|
| 16 |
+
import yaml
|
| 17 |
+
from slugify import slugify
|
| 18 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 19 |
+
|
| 20 |
+
sys.path.insert(0, "ai-toolkit")
|
| 21 |
+
from toolkit.job import get_job
|
| 22 |
+
|
| 23 |
+
MAX_IMAGES = 150
|
| 24 |
+
|
| 25 |
+
def load_captioning(uploaded_files, concept_sentence):
|
| 26 |
+
uploaded_images = [file for file in uploaded_files if not file.endswith('.txt')]
|
| 27 |
+
txt_files = [file for file in uploaded_files if file.endswith('.txt')]
|
| 28 |
+
txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files}
|
| 29 |
+
updates = []
|
| 30 |
+
if len(uploaded_images) <= 1:
|
| 31 |
+
raise gr.Error(
|
| 32 |
+
"Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)"
|
| 33 |
+
)
|
| 34 |
+
elif len(uploaded_images) > MAX_IMAGES:
|
| 35 |
+
raise gr.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training")
|
| 36 |
+
# Update for the captioning_area
|
| 37 |
+
# for _ in range(3):
|
| 38 |
+
updates.append(gr.update(visible=True))
|
| 39 |
+
# Update visibility and image for each captioning row and image
|
| 40 |
+
for i in range(1, MAX_IMAGES + 1):
|
| 41 |
+
# Determine if the current row and image should be visible
|
| 42 |
+
visible = i <= len(uploaded_images)
|
| 43 |
+
|
| 44 |
+
# Update visibility of the captioning row
|
| 45 |
+
updates.append(gr.update(visible=visible))
|
| 46 |
+
|
| 47 |
+
# Update for image component - display image if available, otherwise hide
|
| 48 |
+
image_value = uploaded_images[i - 1] if visible else None
|
| 49 |
+
updates.append(gr.update(value=image_value, visible=visible))
|
| 50 |
+
|
| 51 |
+
corresponding_caption = False
|
| 52 |
+
if(image_value):
|
| 53 |
+
base_name = os.path.splitext(os.path.basename(image_value))[0]
|
| 54 |
+
print(base_name)
|
| 55 |
+
print(image_value)
|
| 56 |
+
if base_name in txt_files_dict:
|
| 57 |
+
print("entrou")
|
| 58 |
+
with open(txt_files_dict[base_name], 'r') as file:
|
| 59 |
+
corresponding_caption = file.read()
|
| 60 |
+
|
| 61 |
+
# Update value of captioning area
|
| 62 |
+
text_value = corresponding_caption if visible and corresponding_caption else "[trigger]" if visible and concept_sentence else None
|
| 63 |
+
updates.append(gr.update(value=text_value, visible=visible))
|
| 64 |
+
|
| 65 |
+
# Update for the sample caption area
|
| 66 |
+
updates.append(gr.update(visible=True))
|
| 67 |
+
# Update prompt samples
|
| 68 |
+
updates.append(gr.update(placeholder=f'A portrait of person in a bustling cafe {concept_sentence}', value=f'A person in a bustling cafe {concept_sentence}'))
|
| 69 |
+
updates.append(gr.update(placeholder=f"A mountainous landscape in the style of {concept_sentence}"))
|
| 70 |
+
updates.append(gr.update(placeholder=f"A {concept_sentence} in a mall"))
|
| 71 |
+
updates.append(gr.update(visible=True))
|
| 72 |
+
return updates
|
| 73 |
+
|
| 74 |
+
def hide_captioning():
|
| 75 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 76 |
+
|
| 77 |
+
def create_dataset(*inputs):
|
| 78 |
+
print("Creating dataset")
|
| 79 |
+
images = inputs[0]
|
| 80 |
+
destination_folder = str(f"datasets")
|
| 81 |
+
if not os.path.exists(destination_folder):
|
| 82 |
+
os.makedirs(destination_folder)
|
| 83 |
+
|
| 84 |
+
jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl")
|
| 85 |
+
with open(jsonl_file_path, "a") as jsonl_file:
|
| 86 |
+
for index, image in enumerate(images):
|
| 87 |
+
new_image_path = shutil.copy(image, destination_folder)
|
| 88 |
+
|
| 89 |
+
original_caption = inputs[index + 1]
|
| 90 |
+
file_name = os.path.basename(new_image_path)
|
| 91 |
+
|
| 92 |
+
data = {"file_name": file_name, "prompt": original_caption}
|
| 93 |
+
|
| 94 |
+
jsonl_file.write(json.dumps(data) + "\n")
|
| 95 |
+
|
| 96 |
+
return destination_folder
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def run_captioning(images, concept_sentence, *captions):
|
| 100 |
+
#Load internally to not consume resources for training
|
| 101 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 102 |
+
torch_dtype = torch.float16
|
| 103 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 104 |
+
"multimodalart/Florence-2-large-no-flash-attn", torch_dtype=torch_dtype, trust_remote_code=True
|
| 105 |
+
).to(device)
|
| 106 |
+
processor = AutoProcessor.from_pretrained("multimodalart/Florence-2-large-no-flash-attn", trust_remote_code=True)
|
| 107 |
+
|
| 108 |
+
captions = list(captions)
|
| 109 |
+
for i, image_path in enumerate(images):
|
| 110 |
+
print(captions[i])
|
| 111 |
+
if isinstance(image_path, str): # If image is a file path
|
| 112 |
+
image = Image.open(image_path).convert("RGB")
|
| 113 |
+
|
| 114 |
+
prompt = "<DETAILED_CAPTION>"
|
| 115 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
|
| 116 |
+
|
| 117 |
+
generated_ids = model.generate(
|
| 118 |
+
input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 122 |
+
parsed_answer = processor.post_process_generation(
|
| 123 |
+
generated_text, task=prompt, image_size=(image.width, image.height)
|
| 124 |
+
)
|
| 125 |
+
caption_text = parsed_answer["<DETAILED_CAPTION>"].replace("The image shows ", "")
|
| 126 |
+
if concept_sentence:
|
| 127 |
+
caption_text = f"{caption_text} [trigger]"
|
| 128 |
+
captions[i] = caption_text
|
| 129 |
+
|
| 130 |
+
yield captions
|
| 131 |
+
model.to("cpu")
|
| 132 |
+
del model
|
| 133 |
+
del processor
|
| 134 |
+
|
| 135 |
+
def recursive_update(d, u):
|
| 136 |
+
for k, v in u.items():
|
| 137 |
+
if isinstance(v, dict) and v:
|
| 138 |
+
d[k] = recursive_update(d.get(k, {}), v)
|
| 139 |
+
else:
|
| 140 |
+
d[k] = v
|
| 141 |
+
return d
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def get_duration( lora_name,
|
| 145 |
+
concept_sentence,
|
| 146 |
+
steps,
|
| 147 |
+
lr,
|
| 148 |
+
rank,
|
| 149 |
+
model_to_train,
|
| 150 |
+
low_vram,
|
| 151 |
+
dataset_folder,
|
| 152 |
+
sample_1,
|
| 153 |
+
sample_2,
|
| 154 |
+
sample_3,
|
| 155 |
+
use_more_advanced_options,
|
| 156 |
+
more_advanced_options,):
|
| 157 |
+
return total_second_length * 60
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def start_training(
|
| 161 |
+
lora_name,
|
| 162 |
+
concept_sentence,
|
| 163 |
+
steps,
|
| 164 |
+
lr,
|
| 165 |
+
rank,
|
| 166 |
+
model_to_train,
|
| 167 |
+
low_vram,
|
| 168 |
+
dataset_folder,
|
| 169 |
+
sample_1,
|
| 170 |
+
sample_2,
|
| 171 |
+
sample_3,
|
| 172 |
+
use_more_advanced_options,
|
| 173 |
+
more_advanced_options,
|
| 174 |
+
):
|
| 175 |
+
push_to_hub = True
|
| 176 |
+
print("flux ttain invoke ====================")
|
| 177 |
+
if not lora_name:
|
| 178 |
+
raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.")
|
| 179 |
+
try:
|
| 180 |
+
if whoami()["auth"]["accessToken"]["role"] == "write" or "repo.write" in whoami()["auth"]["accessToken"]["fineGrained"]["scoped"][0]["permissions"]:
|
| 181 |
+
gr.Info(f"Starting training locally {whoami()['name']}. Your LoRA will be available locally and in Hugging Face after it finishes.")
|
| 182 |
+
else:
|
| 183 |
+
push_to_hub = False
|
| 184 |
+
gr.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face")
|
| 185 |
+
except:
|
| 186 |
+
push_to_hub = False
|
| 187 |
+
gr.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face")
|
| 188 |
+
|
| 189 |
+
print("Started training")
|
| 190 |
+
slugged_lora_name = slugify(lora_name)
|
| 191 |
+
|
| 192 |
+
# Load the default config
|
| 193 |
+
with open("config/examples/train_lora_flux_24gb.yaml", "r") as f:
|
| 194 |
+
config = yaml.safe_load(f)
|
| 195 |
+
|
| 196 |
+
# Update the config with user inputs
|
| 197 |
+
config["config"]["name"] = slugged_lora_name
|
| 198 |
+
config["config"]["process"][0]["model"]["low_vram"] = low_vram
|
| 199 |
+
config["config"]["process"][0]["train"]["skip_first_sample"] = True
|
| 200 |
+
config["config"]["process"][0]["train"]["steps"] = int(steps)
|
| 201 |
+
config["config"]["process"][0]["train"]["lr"] = float(lr)
|
| 202 |
+
config["config"]["process"][0]["network"]["linear"] = int(rank)
|
| 203 |
+
config["config"]["process"][0]["network"]["linear_alpha"] = int(rank)
|
| 204 |
+
config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder
|
| 205 |
+
config["config"]["process"][0]["save"]["push_to_hub"] = push_to_hub
|
| 206 |
+
if(push_to_hub):
|
| 207 |
+
try:
|
| 208 |
+
username = whoami()["name"]
|
| 209 |
+
except:
|
| 210 |
+
raise gr.Error("Error trying to retrieve your username. Are you sure you are logged in with Hugging Face?")
|
| 211 |
+
config["config"]["process"][0]["save"]["hf_repo_id"] = f"{username}/{slugged_lora_name}"
|
| 212 |
+
config["config"]["process"][0]["save"]["hf_private"] = True
|
| 213 |
+
if concept_sentence:
|
| 214 |
+
config["config"]["process"][0]["trigger_word"] = concept_sentence
|
| 215 |
+
|
| 216 |
+
if sample_1 or sample_2 or sample_3:
|
| 217 |
+
config["config"]["process"][0]["train"]["disable_sampling"] = False
|
| 218 |
+
config["config"]["process"][0]["sample"]["sample_every"] = steps
|
| 219 |
+
config["config"]["process"][0]["sample"]["sample_steps"] = 28
|
| 220 |
+
config["config"]["process"][0]["sample"]["prompts"] = []
|
| 221 |
+
if sample_1:
|
| 222 |
+
config["config"]["process"][0]["sample"]["prompts"].append(sample_1)
|
| 223 |
+
if sample_2:
|
| 224 |
+
config["config"]["process"][0]["sample"]["prompts"].append(sample_2)
|
| 225 |
+
if sample_3:
|
| 226 |
+
config["config"]["process"][0]["sample"]["prompts"].append(sample_3)
|
| 227 |
+
else:
|
| 228 |
+
config["config"]["process"][0]["train"]["disable_sampling"] = True
|
| 229 |
+
if(model_to_train == "schnell"):
|
| 230 |
+
config["config"]["process"][0]["model"]["name_or_path"] = "black-forest-labs/FLUX.1-schnell"
|
| 231 |
+
config["config"]["process"][0]["model"]["assistant_lora_path"] = "ostris/FLUX.1-schnell-training-adapter"
|
| 232 |
+
config["config"]["process"][0]["sample"]["sample_steps"] = 4
|
| 233 |
+
if(use_more_advanced_options):
|
| 234 |
+
more_advanced_options_dict = yaml.safe_load(more_advanced_options)
|
| 235 |
+
config["config"]["process"][0] = recursive_update(config["config"]["process"][0], more_advanced_options_dict)
|
| 236 |
+
print(config)
|
| 237 |
+
|
| 238 |
+
# Save the updated config
|
| 239 |
+
# generate a random name for the config
|
| 240 |
+
random_config_name = str(uuid.uuid4())
|
| 241 |
+
os.makedirs("tmp", exist_ok=True)
|
| 242 |
+
config_path = f"tmp/{random_config_name}-{slugged_lora_name}.yaml"
|
| 243 |
+
with open(config_path, "w") as f:
|
| 244 |
+
yaml.dump(config, f)
|
| 245 |
+
|
| 246 |
+
# run the job locally
|
| 247 |
+
job = get_job(config_path)
|
| 248 |
+
job.run()
|
| 249 |
+
job.cleanup()
|
| 250 |
+
|
| 251 |
+
return f"Training completed successfully. Model saved as {slugged_lora_name}"
|
| 252 |
+
|
| 253 |
+
config_yaml = '''
|
| 254 |
+
device: cuda:0
|
| 255 |
+
model:
|
| 256 |
+
is_flux: true
|
| 257 |
+
quantize: true
|
| 258 |
+
network:
|
| 259 |
+
linear: 16 #it will overcome the 'rank' parameter
|
| 260 |
+
linear_alpha: 16 #you can have an alpha different than the ranking if you'd like
|
| 261 |
+
type: lora
|
| 262 |
+
sample:
|
| 263 |
+
guidance_scale: 3.5
|
| 264 |
+
height: 1024
|
| 265 |
+
neg: '' #doesn't work for FLUX
|
| 266 |
+
sample_every: 1000
|
| 267 |
+
sample_steps: 28
|
| 268 |
+
sampler: flowmatch
|
| 269 |
+
seed: 42
|
| 270 |
+
walk_seed: true
|
| 271 |
+
width: 1024
|
| 272 |
+
save:
|
| 273 |
+
dtype: float16
|
| 274 |
+
hf_private: true
|
| 275 |
+
max_step_saves_to_keep: 4
|
| 276 |
+
push_to_hub: true
|
| 277 |
+
save_every: 10000
|
| 278 |
+
train:
|
| 279 |
+
batch_size: 1
|
| 280 |
+
dtype: bf16
|
| 281 |
+
ema_config:
|
| 282 |
+
ema_decay: 0.99
|
| 283 |
+
use_ema: true
|
| 284 |
+
gradient_accumulation_steps: 1
|
| 285 |
+
gradient_checkpointing: true
|
| 286 |
+
noise_scheduler: flowmatch
|
| 287 |
+
optimizer: adamw8bit #options: prodigy, dadaptation, adamw, adamw8bit, lion, lion8bit
|
| 288 |
+
train_text_encoder: false #probably doesn't work for flux
|
| 289 |
+
train_unet: true
|
| 290 |
+
'''
|
| 291 |
+
|
| 292 |
+
theme = gr.themes.Monochrome(
|
| 293 |
+
text_size=gr.themes.Size(lg="18px", md="15px", sm="13px", xl="22px", xs="12px", xxl="24px", xxs="9px"),
|
| 294 |
+
font=[gr.themes.GoogleFont("Source Sans Pro"), "ui-sans-serif", "system-ui", "sans-serif"],
|
| 295 |
+
)
|
| 296 |
+
css = """
|
| 297 |
+
h1{font-size: 2em}
|
| 298 |
+
h3{margin-top: 0}
|
| 299 |
+
#component-1{text-align:center}
|
| 300 |
+
.main_ui_logged_out{opacity: 0.3; pointer-events: none}
|
| 301 |
+
.tabitem{border: 0px}
|
| 302 |
+
.group_padding{padding: .55em}
|
| 303 |
+
"""
|
| 304 |
+
with gr.Blocks(theme=theme, css=css) as demo:
|
| 305 |
+
gr.Markdown(
|
| 306 |
+
"""# LoRA Ease for FLUX 🧞♂️
|
| 307 |
+
### Train a high quality FLUX LoRA in a breeze ༄ using [Ostris' AI Toolkit](https://github.com/ostris/ai-toolkit)"""
|
| 308 |
+
)
|
| 309 |
+
with gr.Column() as main_ui:
|
| 310 |
+
with gr.Row():
|
| 311 |
+
lora_name = gr.Textbox(
|
| 312 |
+
label="The name of your LoRA",
|
| 313 |
+
info="This has to be a unique name",
|
| 314 |
+
placeholder="e.g.: Persian Miniature Painting style, Cat Toy",
|
| 315 |
+
)
|
| 316 |
+
concept_sentence = gr.Textbox(
|
| 317 |
+
label="Trigger word/sentence",
|
| 318 |
+
info="Trigger word or sentence to be used",
|
| 319 |
+
placeholder="uncommon word like p3rs0n or trtcrd, or sentence like 'in the style of CNSTLL'",
|
| 320 |
+
interactive=True,
|
| 321 |
+
)
|
| 322 |
+
with gr.Group(visible=True) as image_upload:
|
| 323 |
+
with gr.Row():
|
| 324 |
+
images = gr.File(
|
| 325 |
+
file_types=["image", ".txt"],
|
| 326 |
+
label="Upload your images",
|
| 327 |
+
file_count="multiple",
|
| 328 |
+
interactive=True,
|
| 329 |
+
visible=True,
|
| 330 |
+
scale=1,
|
| 331 |
+
)
|
| 332 |
+
with gr.Column(scale=3, visible=False) as captioning_area:
|
| 333 |
+
with gr.Column():
|
| 334 |
+
gr.Markdown(
|
| 335 |
+
"""# Custom captioning
|
| 336 |
+
<p style="margin-top:0">You can optionally add a custom caption for each image (or use an AI model for this). [trigger] will represent your concept sentence/trigger word.</p>
|
| 337 |
+
""", elem_classes="group_padding")
|
| 338 |
+
do_captioning = gr.Button("Add AI captions with Florence-2")
|
| 339 |
+
output_components = [captioning_area]
|
| 340 |
+
caption_list = []
|
| 341 |
+
for i in range(1, MAX_IMAGES + 1):
|
| 342 |
+
locals()[f"captioning_row_{i}"] = gr.Row(visible=False)
|
| 343 |
+
with locals()[f"captioning_row_{i}"]:
|
| 344 |
+
locals()[f"image_{i}"] = gr.Image(
|
| 345 |
+
type="filepath",
|
| 346 |
+
width=111,
|
| 347 |
+
height=111,
|
| 348 |
+
min_width=111,
|
| 349 |
+
interactive=False,
|
| 350 |
+
scale=2,
|
| 351 |
+
show_label=False,
|
| 352 |
+
show_share_button=False,
|
| 353 |
+
show_download_button=False,
|
| 354 |
+
)
|
| 355 |
+
locals()[f"caption_{i}"] = gr.Textbox(
|
| 356 |
+
label=f"Caption {i}", scale=15, interactive=True
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
output_components.append(locals()[f"captioning_row_{i}"])
|
| 360 |
+
output_components.append(locals()[f"image_{i}"])
|
| 361 |
+
output_components.append(locals()[f"caption_{i}"])
|
| 362 |
+
caption_list.append(locals()[f"caption_{i}"])
|
| 363 |
+
|
| 364 |
+
with gr.Accordion("Advanced options", open=False):
|
| 365 |
+
steps = gr.Number(label="Steps", value=1000, minimum=1, maximum=10000, step=1)
|
| 366 |
+
lr = gr.Number(label="Learning Rate", value=4e-4, minimum=1e-6, maximum=1e-3, step=1e-6)
|
| 367 |
+
rank = gr.Number(label="LoRA Rank", value=16, minimum=4, maximum=128, step=4)
|
| 368 |
+
model_to_train = gr.Radio(["dev", "schnell"], value="dev", label="Model to train")
|
| 369 |
+
low_vram = gr.Checkbox(label="Low VRAM", value=True)
|
| 370 |
+
with gr.Accordion("Even more advanced options", open=False):
|
| 371 |
+
use_more_advanced_options = gr.Checkbox(label="Use more advanced options", value=False)
|
| 372 |
+
more_advanced_options = gr.Code(config_yaml, language="yaml")
|
| 373 |
+
|
| 374 |
+
with gr.Accordion("Sample prompts (optional)", visible=False) as sample:
|
| 375 |
+
gr.Markdown(
|
| 376 |
+
"Include sample prompts to test out your trained model. Don't forget to include your trigger word/sentence (optional)"
|
| 377 |
+
)
|
| 378 |
+
sample_1 = gr.Textbox(label="Test prompt 1")
|
| 379 |
+
sample_2 = gr.Textbox(label="Test prompt 2")
|
| 380 |
+
sample_3 = gr.Textbox(label="Test prompt 3")
|
| 381 |
+
|
| 382 |
+
output_components.append(sample)
|
| 383 |
+
output_components.append(sample_1)
|
| 384 |
+
output_components.append(sample_2)
|
| 385 |
+
output_components.append(sample_3)
|
| 386 |
+
start = gr.Button("Start training", visible=False)
|
| 387 |
+
output_components.append(start)
|
| 388 |
+
progress_area = gr.Markdown("")
|
| 389 |
+
|
| 390 |
+
dataset_folder = gr.State()
|
| 391 |
+
|
| 392 |
+
images.upload(
|
| 393 |
+
load_captioning,
|
| 394 |
+
inputs=[images, concept_sentence],
|
| 395 |
+
outputs=output_components
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
images.delete(
|
| 399 |
+
load_captioning,
|
| 400 |
+
inputs=[images, concept_sentence],
|
| 401 |
+
outputs=output_components
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
images.clear(
|
| 405 |
+
hide_captioning,
|
| 406 |
+
outputs=[captioning_area, sample, start]
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
start.click(fn=create_dataset, inputs=[images] + caption_list, outputs=dataset_folder).then(
|
| 410 |
+
fn=start_training,
|
| 411 |
+
inputs=[
|
| 412 |
+
lora_name,
|
| 413 |
+
concept_sentence,
|
| 414 |
+
steps,
|
| 415 |
+
lr,
|
| 416 |
+
rank,
|
| 417 |
+
model_to_train,
|
| 418 |
+
low_vram,
|
| 419 |
+
dataset_folder,
|
| 420 |
+
sample_1,
|
| 421 |
+
sample_2,
|
| 422 |
+
sample_3,
|
| 423 |
+
use_more_advanced_options,
|
| 424 |
+
more_advanced_options
|
| 425 |
+
],
|
| 426 |
+
outputs=progress_area,
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
do_captioning.click(fn=run_captioning, inputs=[images, concept_sentence] + caption_list, outputs=caption_list)
|
| 430 |
+
|