Spaces:
Running
Running
| from typing import List | |
| import torch | |
| from toolkit.optimizers.optimizer_utils import Auto8bitTensor, copy_stochastic, stochastic_grad_accummulation | |
| from optimum.quanto import QBytesTensor | |
| import random | |
| class Automagic(torch.optim.Optimizer): | |
| def __init__( | |
| self, | |
| params, | |
| lr=1e-6, # lr is start lr | |
| min_lr=1e-7, | |
| max_lr=1e-3, | |
| lr_bump=1e-6, # amount to bump the lr when adjusting | |
| eps=(1e-30, 1e-3), | |
| clip_threshold=1.0, | |
| beta2=0.999, | |
| weight_decay=0.0, | |
| do_paramiter_swapping=False, | |
| paramiter_swapping_factor=0.1, | |
| ): | |
| self.lr = lr | |
| if self.lr > 1e-3: | |
| print(f"Warning! Start lr is very high: {self.lr}. Forcing to 1e-6. this does not work like prodigy") | |
| self.lr = 1e-6 | |
| self.min_lr = min_lr | |
| self.max_lr = max_lr | |
| self.lr_bump = lr_bump | |
| defaults = { | |
| "lr": lr, | |
| "eps": eps, | |
| "clip_threshold": clip_threshold, | |
| "beta2": beta2, | |
| "weight_decay": weight_decay, | |
| } | |
| super().__init__(params, defaults) | |
| self.base_lrs: List[float] = [ | |
| lr for group in self.param_groups | |
| ] | |
| self.is_stochastic_rounding_accumulation = False | |
| # setup stochastic grad accum hooks | |
| for group in self.param_groups: | |
| for param in group['params']: | |
| if param.requires_grad and param.dtype != torch.float32: | |
| self.is_stochastic_rounding_accumulation = True | |
| param.register_post_accumulate_grad_hook( | |
| stochastic_grad_accummulation | |
| ) | |
| self.do_paramiter_swapping = do_paramiter_swapping | |
| self.paramiter_swapping_factor = paramiter_swapping_factor | |
| self._total_paramiter_size = 0 | |
| # count total paramiters | |
| for group in self.param_groups: | |
| for param in group['params']: | |
| self._total_paramiter_size += torch.numel(param) | |
| # pretty print total paramiters with comma seperation | |
| print(f"Total training paramiters: {self._total_paramiter_size:,}") | |
| # needs to be enabled to count paramiters | |
| if self.do_paramiter_swapping: | |
| self.enable_paramiter_swapping(self.paramiter_swapping_factor) | |
| def enable_paramiter_swapping(self, paramiter_swapping_factor=0.1): | |
| self.do_paramiter_swapping = True | |
| self.paramiter_swapping_factor = paramiter_swapping_factor | |
| # call it an initial time | |
| self.swap_paramiters() | |
| def swap_paramiters(self): | |
| all_params = [] | |
| # deactivate all paramiters | |
| for group in self.param_groups: | |
| for param in group['params']: | |
| param.requires_grad_(False) | |
| # remove any grad | |
| param.grad = None | |
| all_params.append(param) | |
| # shuffle all paramiters | |
| random.shuffle(all_params) | |
| # keep activating paramiters until we are going to go over the target paramiters | |
| target_paramiters = int( | |
| self._total_paramiter_size * self.paramiter_swapping_factor) | |
| total_paramiters = 0 | |
| for param in all_params: | |
| total_paramiters += torch.numel(param) | |
| if total_paramiters >= target_paramiters: | |
| break | |
| else: | |
| param.requires_grad_(True) | |
| def _get_lr(param_group, param_state): | |
| if 'avg_lr' in param_state: | |
| lr = param_state["avg_lr"] | |
| else: | |
| lr = 0.0 | |
| return lr | |
| def _get_group_lr(self, group): | |
| group_lrs = [] | |
| for p in group["params"]: | |
| group_lrs.append(self._get_lr(group, self.state[p])) | |
| # return avg | |
| if len(group_lrs) == 0: | |
| return self.lr | |
| return sum(group_lrs) / len(group_lrs) | |
| def _rms(tensor): | |
| return tensor.norm(2) / (tensor.numel() ** 0.5) | |
| def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col): | |
| r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=- | |
| 1, keepdim=True)).rsqrt_().unsqueeze(-1) | |
| c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt() | |
| return torch.mul(r_factor, c_factor) | |
| def step_hook(self): | |
| if not self.is_stochastic_rounding_accumulation: | |
| return | |
| # copy over stochastically rounded grads | |
| for group in self.param_groups: | |
| for param in group['params']: | |
| if param.requires_grad and hasattr(param, "_accum_grad"): | |
| param.grad = param._accum_grad | |
| del param._accum_grad | |
| # automagic manages its own lr | |
| def get_learning_rates(self): | |
| lrs = [ | |
| self._get_group_lr(group) | |
| for group in self.param_groups | |
| ] | |
| if len(lrs) == 0: | |
| lrs = self.base_lrs # if called before stepping | |
| return lrs | |
| def get_avg_learning_rate(self): | |
| lrs = self.get_learning_rates() | |
| return sum(lrs) / len(lrs) | |
| def step(self, closure=None): | |
| """ | |
| Performs a single optimization step | |
| Arguments: | |
| closure (callable, optional): A closure that reevaluates the model | |
| and returns the loss. | |
| """ | |
| self.step_hook() | |
| loss = None | |
| if closure is not None: | |
| loss = closure() | |
| for group in self.param_groups: | |
| for p in group["params"]: | |
| if p.grad is None or not p.requires_grad: | |
| continue | |
| grad = p.grad | |
| if grad.dtype != torch.float32: | |
| grad = grad.to(torch.float32) | |
| if grad.is_sparse: | |
| raise RuntimeError( | |
| "Automagic does not support sparse gradients.") | |
| state = self.state[p] | |
| grad_shape = grad.shape | |
| factored = len(grad_shape) >= 2 | |
| # State Initialization | |
| if len(state) == 0: | |
| self.initialize_state(p) | |
| else: | |
| # Check if exp_avg_sq_row and exp_avg_sq_col exist for factored case | |
| if factored: | |
| if "exp_avg_sq_row" not in state or "exp_avg_sq_col" not in state: | |
| state["exp_avg_sq_row"] = torch.zeros(p.shape[:-1]).to(grad) | |
| state["exp_avg_sq_col"] = torch.zeros(p.shape[:-2] + p.shape[-1:]).to(grad) | |
| else: | |
| state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad) | |
| state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad) | |
| # Check if exp_avg_sq exists for non-factored case | |
| else: | |
| if "exp_avg_sq" not in state: | |
| state["exp_avg_sq"] = torch.zeros_like(grad) | |
| else: | |
| state["exp_avg_sq"] = state["exp_avg_sq"].to(grad) | |
| p_data_fp32 = p | |
| if isinstance(p_data_fp32, QBytesTensor): | |
| p_data_fp32 = p_data_fp32.dequantize() | |
| if p.dtype != torch.float32: | |
| p_data_fp32 = p_data_fp32.clone().float() | |
| # Initialize step if it doesn't exist | |
| if "step" not in state: | |
| state["step"] = 0 | |
| state["step"] += 1 | |
| state["RMS"] = self._rms(p_data_fp32) | |
| # Use fixed beta2 from group instead of decay_rate calculation | |
| beta2 = group["beta2"] | |
| eps = group["eps"] | |
| if isinstance(eps, tuple) or isinstance(eps, list): | |
| eps = eps[0] | |
| update = (grad**2) + eps | |
| if factored: | |
| exp_avg_sq_row = state["exp_avg_sq_row"] | |
| exp_avg_sq_col = state["exp_avg_sq_col"] | |
| exp_avg_sq_row.mul_(beta2).add_( | |
| update.mean(dim=-1), alpha=(1.0 - beta2)) | |
| exp_avg_sq_col.mul_(beta2).add_( | |
| update.mean(dim=-2), alpha=(1.0 - beta2)) | |
| # Approximation of exponential moving average of square of gradient | |
| update = self._approx_sq_grad( | |
| exp_avg_sq_row, exp_avg_sq_col) | |
| update.mul_(grad) | |
| else: | |
| exp_avg_sq = state["exp_avg_sq"] | |
| exp_avg_sq.mul_(beta2).add_(update, alpha=(1.0 - beta2)) | |
| update = exp_avg_sq.rsqrt().mul_(grad) | |
| update.div_( | |
| (self._rms(update) / group["clip_threshold"]).clamp_(min=1.0)) | |
| # Ensure state is properly initialized | |
| if 'last_polarity' not in state or 'lr_mask' not in state: | |
| self.initialize_state(p) | |
| # Get signs of current last update and updates | |
| last_polarity = state['last_polarity'] | |
| current_polarity = (update > 0).to(torch.bool) | |
| sign_agreement = torch.where( | |
| last_polarity == current_polarity, 1, -1) | |
| state['last_polarity'] = current_polarity | |
| lr_mask = state['lr_mask'].to(torch.float32) | |
| # Update learning rate mask based on sign agreement | |
| new_lr = torch.where( | |
| sign_agreement > 0, | |
| lr_mask + self.lr_bump, # Increase lr | |
| lr_mask - self.lr_bump # Decrease lr | |
| ) | |
| # Clip learning rates to bounds | |
| new_lr = torch.clamp( | |
| new_lr, | |
| min=self.min_lr, | |
| max=self.max_lr | |
| ) | |
| # Apply the learning rate mask to the update | |
| update.mul_(new_lr) | |
| state['lr_mask'] = Auto8bitTensor(new_lr) | |
| state['avg_lr'] = torch.mean(new_lr) | |
| if group["weight_decay"] != 0: | |
| # Apply weight decay with per-parameter learning rates | |
| # Instead of using add_ with a tensor alpha (which isn't supported), | |
| # we'll use element-wise multiplication to apply the weight decay | |
| weight_decay_update = p_data_fp32 * (-group["weight_decay"]) * new_lr | |
| p_data_fp32.add_(weight_decay_update) | |
| p_data_fp32.add_(-update) | |
| if p.dtype != torch.float32: | |
| # apply stochastic rounding | |
| copy_stochastic(p, p_data_fp32) | |
| return loss | |
| def initialize_state(self, p): | |
| state = self.state[p] | |
| state["step"] = 0 | |
| # store the lr mask | |
| if 'lr_mask' not in state: | |
| state['lr_mask'] = Auto8bitTensor(torch.ones( | |
| p.shape).to(p.device, dtype=torch.float32) * self.lr | |
| ) | |
| state['avg_lr'] = torch.mean( | |
| state['lr_mask'].to(torch.float32)) | |
| if 'last_polarity' not in state: | |
| state['last_polarity'] = torch.zeros( | |
| p.shape, dtype=torch.bool, device=p.device) | |
| factored = len(p.shape) >= 2 | |
| if factored: | |
| state["exp_avg_sq_row"] = torch.zeros( | |
| p.shape[:-1]).to(p) | |
| state["exp_avg_sq_col"] = torch.zeros( | |
| p.shape[:-2] + p.shape[-1:]).to(p) | |
| else: | |
| state["exp_avg_sq"] = torch.zeros_like(p) | |
| state["RMS"] = 0 | |
| # override the state_dict to save the lr_mask | |
| def state_dict(self, *args, **kwargs): | |
| orig_state_dict = super().state_dict(*args, **kwargs) | |
| # convert the state to quantized tensor to scale and quantized | |
| new_sace_state = {} | |
| for p, state in orig_state_dict['state'].items(): | |
| save_state = {k: v for k, v in state.items() if k != 'lr_mask'} | |
| # Check if lr_mask exists in the state before trying to access it | |
| if 'lr_mask' in state: | |
| save_state['lr_mask'] = state['lr_mask'].state_dict() | |
| new_sace_state[p] = save_state | |
| orig_state_dict['state'] = new_sace_state | |
| return orig_state_dict | |
| def load_state_dict(self, state_dict, strict=True): | |
| # Validate that the state_dict is from an Automagic optimizer | |
| is_valid_automagic_state = False | |
| # Check if state_dict has the expected structure | |
| if 'state' in state_dict and isinstance(state_dict['state'], dict): | |
| # Check if at least one state entry has an lr_mask, which is specific to Automagic | |
| for param_id, param_state in state_dict['state'].items(): | |
| if isinstance(param_state, dict) and 'lr_mask' in param_state: | |
| is_valid_automagic_state = True | |
| break | |
| if not is_valid_automagic_state: | |
| return | |
| # First, call the parent class's load_state_dict to load the basic optimizer state | |
| # We'll handle the lr_mask separately | |
| state_dict_copy = { | |
| 'state': {}, | |
| 'param_groups': state_dict['param_groups'] | |
| } | |
| # Copy all state entries except lr_mask | |
| for param_id, param_state in state_dict['state'].items(): | |
| state_dict_copy['state'][param_id] = { | |
| k: v for k, v in param_state.items() if k != 'lr_mask' | |
| } | |
| # Call parent class load_state_dict with the modified state dict | |
| super().load_state_dict(state_dict_copy) | |
| # Now handle the lr_mask separately | |
| # We need to map the saved parameters to the current parameters | |
| # This is tricky because the parameter IDs might be different | |
| # Get all current parameters that require gradients | |
| current_params = [] | |
| for group in self.param_groups: | |
| for p in group['params']: | |
| if p.requires_grad: | |
| current_params.append(p) | |
| # If the number of parameters doesn't match, we can't reliably map them | |
| if len(current_params) != len(state_dict['param_groups'][0]['params']): | |
| print(f"WARNING: Number of parameters doesn't match between saved state ({len(state_dict['param_groups'][0]['params'])}) " | |
| f"and current model ({len(current_params)}). Learning rate masks may not be correctly loaded.") | |
| # Map parameters by their position in the param_groups | |
| # This assumes the order of parameters is preserved between saving and loading | |
| saved_param_ids = list(state_dict['state'].keys()) | |
| for i, current_param in enumerate(current_params): | |
| if i >= len(saved_param_ids): | |
| break | |
| saved_param_id = saved_param_ids[i] | |
| saved_state = state_dict['state'][saved_param_id] | |
| # Skip if this saved state doesn't have an lr_mask | |
| if 'lr_mask' not in saved_state: | |
| continue | |
| # Initialize the state for this parameter if it doesn't exist | |
| if current_param not in self.state: | |
| self.initialize_state(current_param) | |
| # Get the current state for this parameter | |
| current_state = self.state[current_param] | |
| # Load the lr_mask from the saved state | |
| saved_lr_mask = saved_state['lr_mask'] | |
| # Reconstruct the Auto8bitTensor from its state dict | |
| try: | |
| # Make sure the shapes match | |
| if 'quantized' in saved_lr_mask and saved_lr_mask['quantized'].shape == current_param.shape: | |
| current_state['lr_mask'] = Auto8bitTensor(saved_lr_mask) | |
| else: | |
| print(f"WARNING: Shape mismatch for parameter {i}. " | |
| f"Expected {current_param.shape}, got {saved_lr_mask['quantized'].shape if 'quantized' in saved_lr_mask else 'unknown'}. " | |
| f"Initializing new lr_mask.") | |
| # Initialize a new lr_mask | |
| current_state['lr_mask'] = Auto8bitTensor(torch.ones( | |
| current_param.shape).to(current_param.device, dtype=torch.float32) * self.lr | |
| ) | |
| except Exception as e: | |
| print(f"ERROR: Failed to load lr_mask for parameter {i}: {e}") | |
| # Initialize a new lr_mask | |
| current_state['lr_mask'] = Auto8bitTensor(torch.ones( | |
| current_param.shape).to(current_param.device, dtype=torch.float32) * self.lr | |
| ) | |