Spaces:
Running
Running
| import os | |
| from typing import TYPE_CHECKING | |
| import torch | |
| import yaml | |
| from toolkit.config_modules import GenerateImageConfig, ModelConfig | |
| from PIL import Image | |
| from toolkit.models.base_model import BaseModel | |
| from toolkit.basic import flush | |
| from diffusers import AutoencoderKL | |
| from toolkit.prompt_utils import PromptEmbeds | |
| from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler | |
| from toolkit.dequantize import patch_dequantization_on_save | |
| from toolkit.accelerator import unwrap_model | |
| from optimum.quanto import freeze, QTensor | |
| from toolkit.util.quantize import quantize, get_qtype | |
| from transformers import T5TokenizerFast, T5EncoderModel | |
| from .src import FLitePipeline, DiT | |
| if TYPE_CHECKING: | |
| from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO | |
| scheduler_config = { | |
| "base_image_seq_len": 256, | |
| "base_shift": 0.5, | |
| "max_image_seq_len": 4096, | |
| "max_shift": 1.15, | |
| "num_train_timesteps": 1000, | |
| "shift": 3.0, | |
| "use_dynamic_shifting": True | |
| } | |
| class FLiteModel(BaseModel): | |
| arch = "f-lite" | |
| def __init__( | |
| self, | |
| device, | |
| model_config: ModelConfig, | |
| dtype='bf16', | |
| custom_pipeline=None, | |
| noise_scheduler=None, | |
| **kwargs | |
| ): | |
| super().__init__( | |
| device, | |
| model_config, | |
| dtype, | |
| custom_pipeline, | |
| noise_scheduler, | |
| **kwargs | |
| ) | |
| self.is_flow_matching = True | |
| self.is_transformer = True | |
| self.target_lora_modules = ['DiT'] | |
| # static method to get the noise scheduler | |
| def get_train_scheduler(): | |
| return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config) | |
| def get_bucket_divisibility(self): | |
| # return the bucket divisibility for the model | |
| return 16 | |
| def load_model(self): | |
| dtype = self.torch_dtype | |
| # will be updated if we detect a existing checkpoint in training folder | |
| model_path = self.model_config.name_or_path | |
| extras_path = self.model_config.extras_name_or_path | |
| self.print_and_status_update("Loading transformer") | |
| transformer = DiT.from_pretrained( | |
| model_path, | |
| subfolder="dit_model", | |
| torch_dtype=dtype, | |
| ) | |
| transformer.to(self.quantize_device, dtype=dtype) | |
| if self.model_config.quantize: | |
| # patch the state dict method | |
| patch_dequantization_on_save(transformer) | |
| quantization_type = get_qtype(self.model_config.qtype) | |
| self.print_and_status_update("Quantizing transformer") | |
| quantize(transformer, weights=quantization_type, | |
| **self.model_config.quantize_kwargs) | |
| freeze(transformer) | |
| transformer.to(self.device_torch) | |
| else: | |
| transformer.to(self.device_torch, dtype=dtype) | |
| flush() | |
| self.print_and_status_update("Loading T5") | |
| tokenizer = T5TokenizerFast.from_pretrained( | |
| extras_path, subfolder="tokenizer", torch_dtype=dtype | |
| ) | |
| text_encoder = T5EncoderModel.from_pretrained( | |
| extras_path, subfolder="text_encoder", torch_dtype=dtype | |
| ) | |
| text_encoder.to(self.device_torch, dtype=dtype) | |
| flush() | |
| if self.model_config.quantize_te: | |
| self.print_and_status_update("Quantizing T5") | |
| quantize(text_encoder, weights=get_qtype( | |
| self.model_config.qtype)) | |
| freeze(text_encoder) | |
| flush() | |
| self.noise_scheduler = FLiteModel.get_train_scheduler() | |
| self.print_and_status_update("Loading VAE") | |
| vae = AutoencoderKL.from_pretrained( | |
| extras_path, | |
| subfolder="vae", | |
| torch_dtype=dtype | |
| ) | |
| vae = vae.to(self.device_torch, dtype=dtype) | |
| self.print_and_status_update("Making pipe") | |
| pipe: FLitePipeline = FLitePipeline( | |
| text_encoder=None, | |
| tokenizer=tokenizer, | |
| vae=vae, | |
| dit_model=None, | |
| ) | |
| # for quantization, it works best to do these after making the pipe | |
| pipe.text_encoder = text_encoder | |
| pipe.dit_model = transformer | |
| pipe.transformer = transformer | |
| pipe.scheduler = self.noise_scheduler, | |
| self.print_and_status_update("Preparing Model") | |
| text_encoder = [pipe.text_encoder] | |
| tokenizer = [pipe.tokenizer] | |
| pipe.transformer = pipe.transformer.to(self.device_torch) | |
| flush() | |
| # just to make sure everything is on the right device and dtype | |
| text_encoder[0].to(self.device_torch) | |
| text_encoder[0].requires_grad_(False) | |
| text_encoder[0].eval() | |
| pipe.transformer = pipe.transformer.to(self.device_torch) | |
| flush() | |
| # save it to the model class | |
| self.vae = vae | |
| self.text_encoder = text_encoder # list of text encoders | |
| self.tokenizer = tokenizer # list of tokenizers | |
| self.model = pipe.transformer | |
| self.pipeline = pipe | |
| self.print_and_status_update("Model Loaded") | |
| def get_generation_pipeline(self): | |
| scheduler = FLiteModel.get_train_scheduler() | |
| # it has built in scheduler. Basically euler flowmatching | |
| pipeline = FLitePipeline( | |
| text_encoder=unwrap_model(self.text_encoder[0]), | |
| tokenizer=self.tokenizer[0], | |
| vae=unwrap_model(self.vae), | |
| dit_model=unwrap_model(self.transformer) | |
| ) | |
| pipeline.transformer = pipeline.dit_model | |
| pipeline.scheduler = scheduler | |
| return pipeline | |
| def generate_single_image( | |
| self, | |
| pipeline: FLitePipeline, | |
| gen_config: GenerateImageConfig, | |
| conditional_embeds: PromptEmbeds, | |
| unconditional_embeds: PromptEmbeds, | |
| generator: torch.Generator, | |
| extra: dict, | |
| ): | |
| extra['negative_prompt_embeds'] = unconditional_embeds.text_embeds | |
| img = pipeline( | |
| prompt_embeds=conditional_embeds.text_embeds, | |
| negative_prompt_embeds=unconditional_embeds.text_embeds, | |
| height=gen_config.height, | |
| width=gen_config.width, | |
| num_inference_steps=gen_config.num_inference_steps, | |
| guidance_scale=gen_config.guidance_scale, | |
| latents=gen_config.latents, | |
| generator=generator, | |
| ).images[0] | |
| return img | |
| def get_noise_prediction( | |
| self, | |
| latent_model_input: torch.Tensor, | |
| timestep: torch.Tensor, # 0 to 1000 scale | |
| text_embeddings: PromptEmbeds, | |
| **kwargs | |
| ): | |
| cast_dtype = self.unet.dtype | |
| noise_pred = self.unet( | |
| latent_model_input.to( | |
| self.device_torch, cast_dtype | |
| ), | |
| text_embeddings.text_embeds.to( | |
| self.device_torch, cast_dtype | |
| ), | |
| timestep / 1000, | |
| ) | |
| if isinstance(noise_pred, QTensor): | |
| noise_pred = noise_pred.dequantize() | |
| return noise_pred | |
| def get_prompt_embeds(self, prompt: str) -> PromptEmbeds: | |
| if isinstance(prompt, str): | |
| prompts = [prompt] | |
| else: | |
| prompts = prompt | |
| if self.pipeline.text_encoder.device != self.device_torch: | |
| self.pipeline.text_encoder.to(self.device_torch) | |
| prompt_embeds, negative_embeds = self.pipeline.encode_prompt( | |
| prompt=prompts, | |
| negative_prompt=None, | |
| device=self.text_encoder[0].device, | |
| dtype=self.torch_dtype, | |
| ) | |
| pe = PromptEmbeds(prompt_embeds) | |
| return pe | |
| def get_model_has_grad(self): | |
| # return from a weight if it has grad | |
| return False | |
| def get_te_has_grad(self): | |
| # return from a weight if it has grad | |
| return False | |
| def save_model(self, output_path, meta, save_dtype): | |
| # only save the unet | |
| transformer: DiT = unwrap_model(self.model) | |
| # diffusers | |
| # only save the unet | |
| transformer: DiT = unwrap_model(self.transformer) | |
| transformer.save_pretrained( | |
| save_directory=os.path.join(output_path, 'dit_model'), | |
| safe_serialization=True, | |
| ) | |
| # save out meta config | |
| meta_path = os.path.join(output_path, 'aitk_meta.yaml') | |
| with open(meta_path, 'w') as f: | |
| yaml.dump(meta, f) | |
| def get_loss_target(self, *args, **kwargs): | |
| noise = kwargs.get('noise') | |
| batch = kwargs.get('batch') | |
| # return (noise - batch.latents).detach() | |
| return (batch.latents - noise).detach() | |
| def convert_lora_weights_before_save(self, state_dict): | |
| # currently starte with transformer. but needs to start with diffusion_model. for comfyui | |
| new_sd = {} | |
| for key, value in state_dict.items(): | |
| new_key = key.replace("transformer.", "diffusion_model.") | |
| new_sd[new_key] = value | |
| return new_sd | |
| def convert_lora_weights_before_load(self, state_dict): | |
| # saved as diffusion_model. but needs to be transformer. for ai-toolkit | |
| new_sd = {} | |
| for key, value in state_dict.items(): | |
| new_key = key.replace("diffusion_model.", "transformer.") | |
| new_sd[new_key] = value | |
| return new_sd | |
| def get_base_model_version(self): | |
| return "f-lite" | |
| def get_stepped_pred(self, pred, noise): | |
| # just used for DFE support | |
| latents = pred + noise | |
| return latents | |