File size: 13,223 Bytes
d3f0ec0
8a8e3b8
0746826
 
 
 
 
b80d30c
0746826
 
 
 
8596067
ad58204
fe3f200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8596067
0746826
 
 
 
 
 
 
 
 
 
5869eb8
 
 
 
c45514e
 
9259e85
 
 
 
0378a15
 
 
 
 
 
 
 
92b9250
 
 
 
 
 
 
 
cae9c53
92b9250
cae9c53
 
 
 
 
 
 
9270d8b
2b8b0e2
56e486b
2b8b0e2
56e486b
 
9270d8b
 
 
 
5869eb8
2b8b0e2
56e486b
 
8500db2
 
56e486b
 
 
 
 
8500db2
 
 
 
 
 
 
 
 
56e486b
2b8b0e2
 
0746826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bee152f
 
fe3f200
e28146b
fe3f200
0746826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a531cb
0746826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os
import spaces
import torch
from diffusers import AutoencoderKLWan, WanPipeline, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
import gradio as gr
import tempfile
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random

MODEL_ID = "FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers"

HF_MODEL = os.environ.get("HF_UPLOAD_REPO", "rahul7star/wan22TITV5B-image-analysis")

def upload_image_and_prompt(input_image, prompt_text) -> str:
    """
    Upload an image and a prompt text to Hugging Face Hub in a date-based folder.
    
    Args:
        input_image (PIL.Image.Image or path-like): The image to upload.
        prompt_text (str): Text prompt or summary associated with the image.

    Returns:
        str: Hugging Face folder path where the image and prompt were uploaded.
    """
    import tempfile
    import os
    import uuid
    from datetime import datetime
    from huggingface_hub import upload_file

    # Create a date-based folder on HF
    today_str = datetime.now().strftime("%Y-%m-%d")
    unique_subfolder = f"Upload-Image-{uuid.uuid4().hex[:8]}"
    hf_folder = f"{today_str}/{unique_subfolder}"

    # Save the image temporarily
    with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_img:
        if isinstance(input_image, str):
            # If path provided, just copy
            import shutil
            shutil.copy(input_image, tmp_img.name)
        else:
            # PIL.Image.Image
            input_image.save(tmp_img.name, format="PNG")
        tmp_img_path = tmp_img.name

    # Upload image
    image_filename = "input_image.png"
    image_hf_path = f"{hf_folder}/{image_filename}"
    upload_file(
        path_or_fileobj=tmp_img_path,
        path_in_repo=image_hf_path,
        repo_id=HF_MODEL,
        repo_type="model",
        token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
    )

    # Upload prompt as summary.txt
    summary_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name
    with open(summary_file, "w", encoding="utf-8") as f:
        f.write(prompt_text)
    summary_hf_path = f"{hf_folder}/summary.txt"
    upload_file(
        path_or_fileobj=summary_file,
        path_in_repo=summary_hf_path,
        repo_id=HF_MODEL,
        repo_type="model",
        token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
    )

    # Cleanup
    os.remove(tmp_img_path)
    os.remove(summary_file)

    return hf_folder


#MODEL_ID ="linoyts/Wan2.2-VACE-Fun-14B-diffusers"
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)

# Initialize pipelines
text_to_video_pipe = WanPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=torch.bfloat16)
image_to_video_pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=torch.bfloat16)

for pipe in [text_to_video_pipe, image_to_video_pipe]:
    pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
    pipe.to("cuda")




##Lora testing
# LORA_REPO_ID = "JERRYNPC/WAN2.2-LORA-NSFW"
# LORA_FILENAME= "jerry_HIGH-nsfw-V10E800.safetensors"





# causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
# pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
# pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
# pipe.fuse_lora()



# LORA_REPO_ID = "AlekseyCalvin/HSToric_Color_Wan2.2_5B_LoRA_BySilverAgePoets"
# LORA_FILENAME = "HSToric_color_Wan22_5b_LoRA.safetensors"
# causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
# pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
# pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
# pipe.fuse_lora()


## works

# LORA_REPO_ID = "UnifiedHorusRA/Beauty_of_rain_Wan_2.1_2.2"
# LORA_FILENAME = "beauty_of_rain_wan2_2_ti2v_5B.safetensors"
# causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
# pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
# pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
# pipe.fuse_lora()



## works

# LORA_REPO_ID = "rahul7star/wan2.2Lora"
# LORA_FILENAME = "DR34ML4Y_TI2V_5B_V1.safetensors"
# causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
# pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
# pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
# pipe.fuse_lora()


## woeks very well

LORA_REPO_ID = "UnifiedHorusRA/Missionary_POV_Wan_2.2_5B_LoRA"
LORA_FILENAME = "missionary-pov-wan2.2_5b-v1.0-vfxai.safetensors"
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
pipe.fuse_lora()

## bad

# LORA_REPO_ID = "rahul7star/wan2.2Lora"
# LORA_FILENAME = "wan2.2_5b_missionary_000005000.safetensors"
# causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
# pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
# pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
# pipe.fuse_lora()




# Constants
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 896
DEFAULT_W_SLIDER_VALUE = 896
NEW_FORMULA_MAX_AREA = 720 * 1024
SLIDER_MIN_H, SLIDER_MAX_H = 256, 1024
SLIDER_MIN_W, SLIDER_MAX_W = 256, 1024
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 24
MIN_FRAMES_MODEL = 25
MAX_FRAMES_MODEL = 193

default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"

def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area, min_slider_h, max_slider_h, min_slider_w, max_slider_w, default_h, default_w):
    orig_w, orig_h = pil_image.size
    if orig_w <= 0 or orig_h <= 0:
        return default_h, default_w
    aspect_ratio = orig_h / orig_w

    calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
    calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
    calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
    calc_w = max(mod_val, (calc_w // mod_val) * mod_val)

    new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
    new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))

    return new_h, new_w

def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
    if uploaded_pil_image is None:
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
    try:
        new_h, new_w = _calculate_new_dimensions_wan(
            uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
            SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
            DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
        )
        return gr.update(value=new_h), gr.update(value=new_w)
    except Exception as e:
        gr.Warning("Error attempting to calculate new dimensions")
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
        
def get_duration(input_image, prompt, height, width, 
                   negative_prompt, duration_seconds,
                   guidance_scale, steps,
                   seed, randomize_seed, 
                   progress):
    if steps > 4 and duration_seconds > 4:
        return 90
    elif steps > 4 or duration_seconds > 4:
        return 75
    else:
        return 60

@spaces.GPU(duration=get_duration)
def generate_video(input_image, prompt, height, width, negative_prompt=default_negative_prompt, duration_seconds=2, guidance_scale=0, steps=4, seed=44, randomize_seed=False, progress=gr.Progress(track_tqdm=True)):
    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)

    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)

    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
    print("prompt is")
    print(prompt)
    # After generating or receiving input image
    #hf_folder = upload_image_and_prompt(input_image, prompt)


    if input_image is not None:
        resized_image = input_image.resize((target_w, target_h))
        with torch.inference_mode():
            output_frames_list = image_to_video_pipe(
                image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
                height=target_h, width=target_w, num_frames=num_frames,
                guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
                generator=torch.Generator(device="cuda").manual_seed(current_seed)
            ).frames[0]
    else:
        with torch.inference_mode():
            output_frames_list = text_to_video_pipe(
                prompt=prompt, negative_prompt=negative_prompt,
                height=target_h, width=target_w, num_frames=num_frames,
                guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
                generator=torch.Generator(device="cuda").manual_seed(current_seed)
            ).frames[0]

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name
    export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
    return video_path, current_seed

with gr.Blocks() as demo:
    gr.Markdown("# Fast Wan 2.2 TI2V 5B Demo")
    gr.Markdown("""This Demo is using [FastWan2.2-TI2V-5B](https://huggingface.co/FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers) which is fine-tuned with Sparse-distill method which allows wan to generate high quality videos in 3-5 steps.""")

    with gr.Row():
        with gr.Column():
            input_image_component = gr.Image(type="pil", label="Input Image (optional, auto-resized to target H/W)")
            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
            duration_seconds_input = gr.Slider(minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), step=0.1, value=2, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")

            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
                seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
                with gr.Row():
                    height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
                    width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
                steps_slider = gr.Slider(minimum=1, maximum=8, step=1, value=4, label="Inference Steps")
                guidance_scale_input = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.0, label="Guidance Scale")
            generate_button = gr.Button("Generate Video", variant="primary")
        with gr.Column():
            video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)

    input_image_component.upload(
        fn=handle_image_upload_for_dims_wan,
        inputs=[input_image_component, height_input, width_input],
        outputs=[height_input, width_input]
    )

    input_image_component.clear(
        fn=handle_image_upload_for_dims_wan,
        inputs=[input_image_component, height_input, width_input],
        outputs=[height_input, width_input]
    )
    #upload_image_and_prompt(input_image_component, prompt_input)
    ui_inputs = [
        input_image_component, prompt_input, height_input, width_input,
        negative_prompt_input, duration_seconds_input,
        guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
    ]
    generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])

    gr.Examples(
        examples=[ 
            [None, "A person eating spaghetti", 1024, 720],
            ["cat.png", "The cat removes the glasses from its eyes.", 1088, 800],
            [None, "a penguin playfully dancing in the snow, Antarctica", 1024, 720],
            ["peng.png", "a penguin running towards camera joyfully, Antarctica", 896, 512],
        ],
        
        inputs=[input_image_component, prompt_input, height_input, width_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
    )

if __name__ == "__main__":
    demo.queue().launch()