Update app.py
Browse files
app.py
CHANGED
|
@@ -4,8 +4,6 @@ from PIL import Image
|
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
import cv2
|
| 6 |
import numpy as np
|
| 7 |
-
from typing import Optional
|
| 8 |
-
import tempfile
|
| 9 |
import os
|
| 10 |
|
| 11 |
MID = "apple/FastVLM-7B"
|
|
@@ -15,6 +13,7 @@ IMAGE_TOKEN_INDEX = -200
|
|
| 15 |
tok = None
|
| 16 |
model = None
|
| 17 |
|
|
|
|
| 18 |
def load_model():
|
| 19 |
global tok, model
|
| 20 |
if tok is None or model is None:
|
|
@@ -29,15 +28,16 @@ def load_model():
|
|
| 29 |
print("Model loaded successfully on CPU!")
|
| 30 |
return tok, model
|
| 31 |
|
|
|
|
|
|
|
| 32 |
def extract_frames(video_path: str, num_frames: int = 8, sampling_method: str = "uniform"):
|
| 33 |
-
"""Extract frames from video"""
|
| 34 |
cap = cv2.VideoCapture(video_path)
|
| 35 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 36 |
-
|
| 37 |
if total_frames == 0:
|
| 38 |
cap.release()
|
| 39 |
return []
|
| 40 |
-
|
| 41 |
frames = []
|
| 42 |
if sampling_method == "uniform":
|
| 43 |
indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
|
|
@@ -49,19 +49,20 @@ def extract_frames(video_path: str, num_frames: int = 8, sampling_method: str =
|
|
| 49 |
else: # middle
|
| 50 |
start = max(0, (total_frames - num_frames) // 2)
|
| 51 |
indices = list(range(start, min(start + num_frames, total_frames)))
|
| 52 |
-
|
| 53 |
for idx in indices:
|
| 54 |
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
|
| 55 |
ret, frame = cap.read()
|
| 56 |
if ret:
|
| 57 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 58 |
frames.append(Image.fromarray(frame_rgb))
|
| 59 |
-
|
| 60 |
cap.release()
|
| 61 |
return frames
|
| 62 |
|
|
|
|
|
|
|
| 63 |
def caption_frame(image: Image.Image, prompt: str) -> str:
|
| 64 |
-
"""Generate caption for a single frame (CPU only)"""
|
| 65 |
tok, model = load_model()
|
| 66 |
|
| 67 |
messages = [{"role": "user", "content": f"<image>\n{prompt}"}]
|
|
@@ -75,11 +76,8 @@ def caption_frame(image: Image.Image, prompt: str) -> str:
|
|
| 75 |
input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1)
|
| 76 |
|
| 77 |
attention_mask = torch.ones_like(input_ids)
|
| 78 |
-
|
| 79 |
-
# Preprocess image
|
| 80 |
px = model.get_vision_tower().image_processor(images=image, return_tensors="pt")["pixel_values"]
|
| 81 |
|
| 82 |
-
# Generate on CPU
|
| 83 |
with torch.no_grad():
|
| 84 |
out = model.generate(
|
| 85 |
inputs=input_ids,
|
|
@@ -93,5 +91,85 @@ def caption_frame(image: Image.Image, prompt: str) -> str:
|
|
| 93 |
caption = tok.decode(out[0], skip_special_tokens=True)
|
| 94 |
if prompt in caption:
|
| 95 |
caption = caption.split(prompt)[-1].strip()
|
| 96 |
-
|
| 97 |
return caption
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
import cv2
|
| 6 |
import numpy as np
|
|
|
|
|
|
|
| 7 |
import os
|
| 8 |
|
| 9 |
MID = "apple/FastVLM-7B"
|
|
|
|
| 13 |
tok = None
|
| 14 |
model = None
|
| 15 |
|
| 16 |
+
# ---------------- Load Model ----------------
|
| 17 |
def load_model():
|
| 18 |
global tok, model
|
| 19 |
if tok is None or model is None:
|
|
|
|
| 28 |
print("Model loaded successfully on CPU!")
|
| 29 |
return tok, model
|
| 30 |
|
| 31 |
+
|
| 32 |
+
# ---------------- Frame Extraction ----------------
|
| 33 |
def extract_frames(video_path: str, num_frames: int = 8, sampling_method: str = "uniform"):
|
|
|
|
| 34 |
cap = cv2.VideoCapture(video_path)
|
| 35 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 36 |
+
|
| 37 |
if total_frames == 0:
|
| 38 |
cap.release()
|
| 39 |
return []
|
| 40 |
+
|
| 41 |
frames = []
|
| 42 |
if sampling_method == "uniform":
|
| 43 |
indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
|
|
|
|
| 49 |
else: # middle
|
| 50 |
start = max(0, (total_frames - num_frames) // 2)
|
| 51 |
indices = list(range(start, min(start + num_frames, total_frames)))
|
| 52 |
+
|
| 53 |
for idx in indices:
|
| 54 |
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
|
| 55 |
ret, frame = cap.read()
|
| 56 |
if ret:
|
| 57 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 58 |
frames.append(Image.fromarray(frame_rgb))
|
| 59 |
+
|
| 60 |
cap.release()
|
| 61 |
return frames
|
| 62 |
|
| 63 |
+
|
| 64 |
+
# ---------------- Caption Frame ----------------
|
| 65 |
def caption_frame(image: Image.Image, prompt: str) -> str:
|
|
|
|
| 66 |
tok, model = load_model()
|
| 67 |
|
| 68 |
messages = [{"role": "user", "content": f"<image>\n{prompt}"}]
|
|
|
|
| 76 |
input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1)
|
| 77 |
|
| 78 |
attention_mask = torch.ones_like(input_ids)
|
|
|
|
|
|
|
| 79 |
px = model.get_vision_tower().image_processor(images=image, return_tensors="pt")["pixel_values"]
|
| 80 |
|
|
|
|
| 81 |
with torch.no_grad():
|
| 82 |
out = model.generate(
|
| 83 |
inputs=input_ids,
|
|
|
|
| 91 |
caption = tok.decode(out[0], skip_special_tokens=True)
|
| 92 |
if prompt in caption:
|
| 93 |
caption = caption.split(prompt)[-1].strip()
|
| 94 |
+
|
| 95 |
return caption
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# ---------------- Process Video ----------------
|
| 99 |
+
def process_video(video_path, num_frames, sampling_method, chat_history, progress=gr.Progress()):
|
| 100 |
+
if not video_path:
|
| 101 |
+
chat_history.append(["Assistant", "Please upload a video first."])
|
| 102 |
+
return chat_history, None
|
| 103 |
+
|
| 104 |
+
progress(0, desc="Extracting frames...")
|
| 105 |
+
frames = extract_frames(video_path, num_frames, sampling_method)
|
| 106 |
+
|
| 107 |
+
if not frames:
|
| 108 |
+
chat_history.append(["Assistant", "Failed to extract frames."])
|
| 109 |
+
return chat_history, None
|
| 110 |
+
|
| 111 |
+
prompt = "Provide a brief one-sentence description of what's happening in this image."
|
| 112 |
+
captions = []
|
| 113 |
+
|
| 114 |
+
chat_history.append(["Assistant", "Analyzing frames..."])
|
| 115 |
+
for i, frame in enumerate(frames):
|
| 116 |
+
caption = caption_frame(frame, prompt)
|
| 117 |
+
captions.append(f"Frame {i+1}: {caption}")
|
| 118 |
+
chat_history[-1] = ["Assistant", "\n".join(captions)]
|
| 119 |
+
progress((i + 1) / len(frames))
|
| 120 |
+
|
| 121 |
+
progress(1.0, desc="Analysis complete!")
|
| 122 |
+
return chat_history, frames
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
# ---------------- Custom Apple-like Theme ----------------
|
| 126 |
+
class AppleTheme(gr.themes.Base):
|
| 127 |
+
def __init__(self):
|
| 128 |
+
super().__init__(
|
| 129 |
+
primary_hue=gr.themes.colors.blue,
|
| 130 |
+
secondary_hue=gr.themes.colors.gray,
|
| 131 |
+
neutral_hue=gr.themes.colors.gray,
|
| 132 |
+
spacing_size=gr.themes.sizes.spacing_md,
|
| 133 |
+
radius_size=gr.themes.sizes.radius_md,
|
| 134 |
+
text_size=gr.themes.sizes.text_md,
|
| 135 |
+
font=[gr.themes.GoogleFont("Inter"), "SF Pro Display", "Helvetica Neue", "Arial", "sans-serif"],
|
| 136 |
+
font_mono=[gr.themes.GoogleFont("SF Mono"), "Consolas", "monospace"]
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
# ---------------- Gradio UI ----------------
|
| 141 |
+
with gr.Blocks(theme=AppleTheme()) as demo:
|
| 142 |
+
gr.Markdown("# 🎬 FastVLM Video Captioning (CPU Only)")
|
| 143 |
+
|
| 144 |
+
with gr.Row():
|
| 145 |
+
with gr.Column(scale=7):
|
| 146 |
+
video_display = gr.Video(label="Video Input", autoplay=True, loop=True)
|
| 147 |
+
|
| 148 |
+
with gr.Sidebar(width=400):
|
| 149 |
+
chatbot = gr.Chatbot(
|
| 150 |
+
value=[["Assistant", "Upload a video and I'll analyze it for you!"]],
|
| 151 |
+
height=400
|
| 152 |
+
)
|
| 153 |
+
process_btn = gr.Button("🎯 Analyze Video", variant="primary")
|
| 154 |
+
|
| 155 |
+
with gr.Accordion("🖼️ Analyzed Frames", open=False):
|
| 156 |
+
frame_gallery = gr.Gallery(columns=2, rows=4, height="auto")
|
| 157 |
+
|
| 158 |
+
num_frames = gr.State(value=4)
|
| 159 |
+
sampling_method = gr.State(value="uniform")
|
| 160 |
+
|
| 161 |
+
process_btn.click(
|
| 162 |
+
fn=process_video,
|
| 163 |
+
inputs=[video_display, num_frames, sampling_method, chatbot],
|
| 164 |
+
outputs=[chatbot, frame_gallery],
|
| 165 |
+
show_progress=True
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
# ---------------- Launch ----------------
|
| 170 |
+
demo.launch(
|
| 171 |
+
server_name="0.0.0.0", # Spaces/containers need this
|
| 172 |
+
server_port=7860,
|
| 173 |
+
share=False,
|
| 174 |
+
show_error=True
|
| 175 |
+
)
|