Spaces:
Running
Running
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,70 +1,70 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: PromptWizard Qwen Training
|
| 3 |
-
emoji: 🧙
|
| 4 |
-
colorFrom: purple
|
| 5 |
-
colorTo: blue
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
license: mit
|
| 11 |
-
suggested_hardware: zero-a10g
|
| 12 |
-
---
|
| 13 |
-
|
| 14 |
-
# PromptWizard Qwen Fine-tuning
|
| 15 |
-
|
| 16 |
-
This Space fine-tunes Qwen models using the GSM8K dataset with PromptWizard optimization methodology.
|
| 17 |
-
|
| 18 |
-
## Features
|
| 19 |
-
|
| 20 |
-
- **GPU-Accelerated Training**: Uses HuggingFace's GPU infrastructure for fast training
|
| 21 |
-
- **LoRA Fine-tuning**: Efficient parameter-efficient fine-tuning
|
| 22 |
-
- **GSM8K Dataset**: High-quality mathematical reasoning dataset
|
| 23 |
-
- **PromptWizard Integration**: Uses Microsoft's PromptWizard evaluation methodology
|
| 24 |
-
- **Auto Push to Hub**: Trained models are automatically uploaded to HuggingFace Hub
|
| 25 |
-
|
| 26 |
-
## How to Use
|
| 27 |
-
|
| 28 |
-
1. Select your base model (default: Qwen/Qwen2.5-7B)
|
| 29 |
-
2. Configure training parameters:
|
| 30 |
-
- Number of epochs (3-5 recommended)
|
| 31 |
-
- Batch size (4-8 for T4 GPU)
|
| 32 |
-
- Learning rate (2e-5 is a good default)
|
| 33 |
-
3. Click "Start Training" and monitor the output
|
| 34 |
-
4. The trained model will be pushed to HuggingFace Hub
|
| 35 |
-
|
| 36 |
-
## Training Data
|
| 37 |
-
|
| 38 |
-
The Space uses the GSM8K dataset, which contains grade school math problems. The data is formatted according to PromptWizard specifications for optimal prompt optimization.
|
| 39 |
-
|
| 40 |
-
## Model Output
|
| 41 |
-
|
| 42 |
-
After training, the model will be available at:
|
| 43 |
-
- HuggingFace Hub: `your-username/promptwizard-qwen-gsm8k`
|
| 44 |
-
- Local download: Available in the Space's output directory
|
| 45 |
-
|
| 46 |
-
## Technical Details
|
| 47 |
-
|
| 48 |
-
- **Base Model**: Qwen2.5-7B (or your choice)
|
| 49 |
-
- **Training Method**: LoRA with rank 16
|
| 50 |
-
- **Quantization**: 8-bit for memory efficiency
|
| 51 |
-
- **Mixed Precision**: FP16 for faster training
|
| 52 |
-
- **Gradient Checkpointing**: Enabled for memory savings
|
| 53 |
-
|
| 54 |
-
## Resource Requirements
|
| 55 |
-
|
| 56 |
-
- **GPU**: T4 or better recommended
|
| 57 |
-
- **Memory**: 16GB+ GPU memory
|
| 58 |
-
- **Training Time**: ~30-60 minutes on T4
|
| 59 |
-
|
| 60 |
-
## Citation
|
| 61 |
-
|
| 62 |
-
If you use this training setup, please cite:
|
| 63 |
-
|
| 64 |
-
```bibtex
|
| 65 |
-
@misc{promptwizard2024,
|
| 66 |
-
title={PromptWizard: Task-Aware Prompt Optimization},
|
| 67 |
-
author={Microsoft Research},
|
| 68 |
-
year={2024}
|
| 69 |
-
}
|
| 70 |
```
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: PromptWizard Qwen Training
|
| 3 |
+
emoji: 🧙
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.49.1
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
suggested_hardware: zero-a10g
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# PromptWizard Qwen Fine-tuning
|
| 15 |
+
|
| 16 |
+
This Space fine-tunes Qwen models using the GSM8K dataset with PromptWizard optimization methodology.
|
| 17 |
+
|
| 18 |
+
## Features
|
| 19 |
+
|
| 20 |
+
- **GPU-Accelerated Training**: Uses HuggingFace's GPU infrastructure for fast training
|
| 21 |
+
- **LoRA Fine-tuning**: Efficient parameter-efficient fine-tuning
|
| 22 |
+
- **GSM8K Dataset**: High-quality mathematical reasoning dataset
|
| 23 |
+
- **PromptWizard Integration**: Uses Microsoft's PromptWizard evaluation methodology
|
| 24 |
+
- **Auto Push to Hub**: Trained models are automatically uploaded to HuggingFace Hub
|
| 25 |
+
|
| 26 |
+
## How to Use
|
| 27 |
+
|
| 28 |
+
1. Select your base model (default: Qwen/Qwen2.5-7B)
|
| 29 |
+
2. Configure training parameters:
|
| 30 |
+
- Number of epochs (3-5 recommended)
|
| 31 |
+
- Batch size (4-8 for T4 GPU)
|
| 32 |
+
- Learning rate (2e-5 is a good default)
|
| 33 |
+
3. Click "Start Training" and monitor the output
|
| 34 |
+
4. The trained model will be pushed to HuggingFace Hub
|
| 35 |
+
|
| 36 |
+
## Training Data
|
| 37 |
+
|
| 38 |
+
The Space uses the GSM8K dataset, which contains grade school math problems. The data is formatted according to PromptWizard specifications for optimal prompt optimization.
|
| 39 |
+
|
| 40 |
+
## Model Output
|
| 41 |
+
|
| 42 |
+
After training, the model will be available at:
|
| 43 |
+
- HuggingFace Hub: `your-username/promptwizard-qwen-gsm8k`
|
| 44 |
+
- Local download: Available in the Space's output directory
|
| 45 |
+
|
| 46 |
+
## Technical Details
|
| 47 |
+
|
| 48 |
+
- **Base Model**: Qwen2.5-7B (or your choice)
|
| 49 |
+
- **Training Method**: LoRA with rank 16
|
| 50 |
+
- **Quantization**: 8-bit for memory efficiency
|
| 51 |
+
- **Mixed Precision**: FP16 for faster training
|
| 52 |
+
- **Gradient Checkpointing**: Enabled for memory savings
|
| 53 |
+
|
| 54 |
+
## Resource Requirements
|
| 55 |
+
|
| 56 |
+
- **GPU**: T4 or better recommended
|
| 57 |
+
- **Memory**: 16GB+ GPU memory
|
| 58 |
+
- **Training Time**: ~30-60 minutes on T4
|
| 59 |
+
|
| 60 |
+
## Citation
|
| 61 |
+
|
| 62 |
+
If you use this training setup, please cite:
|
| 63 |
+
|
| 64 |
+
```bibtex
|
| 65 |
+
@misc{promptwizard2024,
|
| 66 |
+
title={PromptWizard: Task-Aware Prompt Optimization},
|
| 67 |
+
author={Microsoft Research},
|
| 68 |
+
year={2024}
|
| 69 |
+
}
|
| 70 |
```
|