Qwen-Training / train_on_hf.py
PromptWizard Bot
Initial commit: PromptWizard Qwen training with real GSM8K data
a178e35
raw
history blame
9.82 kB
#!/usr/bin/env python3
"""
Train Qwen model on HuggingFace infrastructure using GSM8K dataset
This script is designed to run on HuggingFace Spaces or HF Training API
"""
import json
import os
import torch
from datasets import Dataset, load_dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling
)
from peft import LoraConfig, get_peft_model, TaskType
import numpy as np
from typing import Dict, List
import wandb
# Initialize wandb for experiment tracking (optional)
USE_WANDB = os.getenv("USE_WANDB", "false").lower() == "true"
if USE_WANDB:
wandb.init(project="promptwizard-qwen-finetuning")
class PromptWizardDataset:
"""Dataset handler for PromptWizard-style training data"""
def __init__(self, data_path: str, tokenizer, max_length: int = 512):
self.tokenizer = tokenizer
self.max_length = max_length
self.data = self.load_data(data_path)
def load_data(self, path: str) -> List[Dict]:
"""Load JSONL data from file"""
data = []
with open(path, 'r') as f:
for line in f:
data.append(json.loads(line))
return data
def format_prompt(self, item: Dict) -> str:
"""Format data item into a prompt for training"""
# Use PromptWizard-style formatting
prompt = f"""<|system|>
You are a mathematics expert. Your task is to solve grade school math problems step by step.
<|user|>
{item['question']}
<|assistant|>
Let me solve this step by step.
{item['full_solution']}"""
return prompt
def tokenize_function(self, examples):
"""Tokenize examples for training"""
prompts = [self.format_prompt(item) for item in examples]
model_inputs = self.tokenizer(
prompts,
max_length=self.max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
)
# Set labels same as input_ids for causal LM
model_inputs["labels"] = model_inputs["input_ids"].clone()
return model_inputs
def prepare_model_for_training(model_name: str = "Qwen/Qwen2.5-7B"):
"""Prepare model and tokenizer for training with LoRA"""
print(f"Loading model: {model_name}")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
padding_side="left"
)
# Add padding token if not present
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load model with quantization for efficiency
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="auto",
load_in_8bit=True # Use 8-bit quantization to reduce memory
)
# Configure LoRA for efficient fine-tuning
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=16, # LoRA rank
lora_alpha=32,
lora_dropout=0.1,
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], # Target attention layers
bias="none"
)
# Apply LoRA
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
return model, tokenizer
def create_datasets(tokenizer):
"""Create train and eval datasets from prepared data"""
train_path = "/home/matt/prompt-wizard/nextjs-app/data/gsm8k/train.jsonl"
test_path = "/home/matt/prompt-wizard/nextjs-app/data/gsm8k/test.jsonl"
# For HF Spaces, we might need to download from HF Hub instead
if not os.path.exists(train_path):
print("Local data not found, downloading from HF Hub...")
dataset = load_dataset("openai/gsm8k", "main")
# Process and save locally
train_data = []
for item in dataset['train'][:100]: # Use subset for demo
answer_parts = item['answer'].split('####')
final_answer = answer_parts[-1].strip() if len(answer_parts) >= 2 else item['answer'].strip()
train_data.append({
"question": item['question'],
"answer": final_answer,
"full_solution": item['answer']
})
test_data = []
for item in dataset['test'][:50]: # Use subset for demo
answer_parts = item['answer'].split('####')
final_answer = answer_parts[-1].strip() if len(answer_parts) >= 2 else item['answer'].strip()
test_data.append({
"question": item['question'],
"answer": final_answer,
"full_solution": item['answer']
})
else:
# Load from local files
train_handler = PromptWizardDataset(train_path, tokenizer)
test_handler = PromptWizardDataset(test_path, tokenizer)
train_data = train_handler.data
test_data = test_handler.data
# Format prompts
def format_for_training(item):
prompt = f"""<|system|>
You are a mathematics expert. Your task is to solve grade school math problems step by step.
<|user|>
{item['question']}
<|assistant|>
Let me solve this step by step.
{item['full_solution']}"""
return {"text": prompt}
train_texts = [format_for_training(item) for item in train_data]
test_texts = [format_for_training(item) for item in test_data]
# Create HF datasets
train_dataset = Dataset.from_list(train_texts)
eval_dataset = Dataset.from_list(test_texts)
# Tokenize datasets
def tokenize_function(examples):
return tokenizer(
examples["text"],
padding="max_length",
truncation=True,
max_length=512
)
train_dataset = train_dataset.map(tokenize_function, batched=True)
eval_dataset = eval_dataset.map(tokenize_function, batched=True)
return train_dataset, eval_dataset
def compute_metrics(eval_pred):
"""Compute training metrics"""
predictions, labels = eval_pred
# Calculate perplexity
loss = np.mean(predictions)
perplexity = np.exp(loss)
return {
"perplexity": perplexity
}
def main():
"""Main training function"""
print("="*60)
print("PromptWizard Qwen Fine-tuning on HuggingFace")
print("="*60)
# Configuration
MODEL_NAME = os.getenv("MODEL_NAME", "Qwen/Qwen2.5-7B")
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./qwen-promptwizard-finetuned")
NUM_EPOCHS = int(os.getenv("NUM_EPOCHS", "3"))
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "4"))
LEARNING_RATE = float(os.getenv("LEARNING_RATE", "2e-5"))
# Prepare model and tokenizer
model, tokenizer = prepare_model_for_training(MODEL_NAME)
# Create datasets
print("\nPreparing datasets...")
train_dataset, eval_dataset = create_datasets(tokenizer)
print(f"Train dataset size: {len(train_dataset)}")
print(f"Eval dataset size: {len(eval_dataset)}")
# Training arguments optimized for HF infrastructure
training_args = TrainingArguments(
output_dir=OUTPUT_DIR,
num_train_epochs=NUM_EPOCHS,
per_device_train_batch_size=BATCH_SIZE,
per_device_eval_batch_size=BATCH_SIZE,
gradient_accumulation_steps=4, # Simulate larger batch size
warmup_steps=100,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=10,
evaluation_strategy="steps",
eval_steps=50,
save_strategy="steps",
save_steps=100,
save_total_limit=2,
load_best_model_at_end=True,
metric_for_best_model="eval_loss",
greater_is_better=False,
fp16=True, # Use mixed precision for faster training
push_to_hub=True, # Push to HF Hub when done
hub_model_id="promptwizard-qwen-gsm8k",
hub_strategy="end",
report_to=["wandb"] if USE_WANDB else [],
gradient_checkpointing=True, # Save memory
optim="adamw_torch",
learning_rate=LEARNING_RATE,
lr_scheduler_type="cosine",
)
# Data collator
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False, # Causal LM, not masked LM
pad_to_multiple_of=8
)
# Initialize trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
# Start training
print("\nStarting training...")
print(f"Using {torch.cuda.device_count()} GPUs")
trainer.train()
# Save the final model
print("\nSaving model...")
trainer.save_model(OUTPUT_DIR)
tokenizer.save_pretrained(OUTPUT_DIR)
# Push to HF Hub
if training_args.push_to_hub:
print("\nPushing to HuggingFace Hub...")
trainer.push_to_hub()
print("\n" + "="*60)
print("Training complete!")
print(f"Model saved to: {OUTPUT_DIR}")
print("="*60)
# Evaluate final performance
print("\nFinal evaluation:")
eval_results = trainer.evaluate()
for key, value in eval_results.items():
print(f"{key}: {value:.4f}")
return trainer, model, tokenizer
if __name__ == "__main__":
trainer, model, tokenizer = main()