File size: 9,827 Bytes
a178e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "# PromptWizard Qwen Fine-tuning on HuggingFace\n",
        "\n",
        "This notebook fine-tunes Qwen models using GSM8K dataset with PromptWizard methodology.\n",
        "Run this on HuggingFace or Google Colab with GPU support."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "# Install required packages\n",
        "!pip install -q transformers==4.36.2 datasets==2.16.1 peft==0.7.1 accelerate==0.25.0 bitsandbytes==0.41.3"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "import torch\n",
        "import json\n",
        "from datasets import Dataset, load_dataset\n",
        "from transformers import (\n",
        "    AutoModelForCausalLM,\n",
        "    AutoTokenizer,\n",
        "    TrainingArguments,\n",
        "    Trainer,\n",
        "    DataCollatorForLanguageModeling\n",
        ")\n",
        "from peft import LoraConfig, get_peft_model, TaskType\n",
        "\n",
        "# Check GPU availability\n",
        "if torch.cuda.is_available():\n",
        "    print(f\"✅ GPU Available: {torch.cuda.get_device_name(0)}\")\n",
        "    print(f\"   Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB\")\n",
        "else:\n",
        "    print(\"⚠️ No GPU detected. Training will be slow.\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "# Load and prepare GSM8K dataset\n",
        "print(\"Loading GSM8K dataset...\")\n",
        "dataset = load_dataset(\"openai/gsm8k\", \"main\")\n",
        "\n",
        "def format_prompt(item):\n",
        "    \"\"\"Format GSM8K item for training\"\"\"\n",
        "    prompt = f\"\"\"<|system|>\n",
        "You are a mathematics expert. Solve grade school math problems step by step.\n",
        "<|user|>\n",
        "{item['question']}\n",
        "<|assistant|>\n",
        "Let me solve this step by step.\n",
        "\n",
        "{item['answer']}\"\"\"\n",
        "    return {\"text\": prompt}\n",
        "\n",
        "# Process datasets (using smaller subset for demo)\n",
        "train_data = dataset['train'].select(range(min(1000, len(dataset['train']))))\n",
        "eval_data = dataset['test'].select(range(min(100, len(dataset['test']))))\n",
        "\n",
        "train_dataset = train_data.map(format_prompt)\n",
        "eval_dataset = eval_data.map(format_prompt)\n",
        "\n",
        "print(f\"Train samples: {len(train_dataset)}\")\n",
        "print(f\"Eval samples: {len(eval_dataset)}\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "# Load model and tokenizer\n",
        "MODEL_NAME = \"Qwen/Qwen2.5-1.5B\"  # Using smaller model for faster training\n",
        "\n",
        "print(f\"Loading {MODEL_NAME}...\")\n",
        "\n",
        "tokenizer = AutoTokenizer.from_pretrained(\n",
        "    MODEL_NAME,\n",
        "    trust_remote_code=True,\n",
        "    padding_side=\"left\"\n",
        ")\n",
        "\n",
        "if tokenizer.pad_token is None:\n",
        "    tokenizer.pad_token = tokenizer.eos_token\n",
        "\n",
        "model = AutoModelForCausalLM.from_pretrained(\n",
        "    MODEL_NAME,\n",
        "    trust_remote_code=True,\n",
        "    torch_dtype=torch.float16,\n",
        "    device_map=\"auto\",\n",
        "    load_in_8bit=True\n",
        ")\n",
        "\n",
        "# Configure LoRA\n",
        "lora_config = LoraConfig(\n",
        "    task_type=TaskType.CAUSAL_LM,\n",
        "    r=8,  # Lower rank for faster training\n",
        "    lora_alpha=16,\n",
        "    lora_dropout=0.1,\n",
        "    target_modules=[\"q_proj\", \"v_proj\"],\n",
        "    bias=\"none\"\n",
        ")\n",
        "\n",
        "model = get_peft_model(model, lora_config)\n",
        "model.print_trainable_parameters()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "# Tokenize datasets\n",
        "def tokenize_function(examples):\n",
        "    return tokenizer(\n",
        "        examples[\"text\"],\n",
        "        padding=\"max_length\",\n",
        "        truncation=True,\n",
        "        max_length=512\n",
        "    )\n",
        "\n",
        "print(\"Tokenizing datasets...\")\n",
        "train_dataset = train_dataset.map(tokenize_function, batched=True)\n",
        "eval_dataset = eval_dataset.map(tokenize_function, batched=True)\n",
        "\n",
        "# Data collator\n",
        "data_collator = DataCollatorForLanguageModeling(\n",
        "    tokenizer=tokenizer,\n",
        "    mlm=False,\n",
        "    pad_to_multiple_of=8\n",
        ")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "# Training arguments\n",
        "training_args = TrainingArguments(\n",
        "    output_dir=\"./qwen-promptwizard\",\n",
        "    num_train_epochs=1,  # Quick training for demo\n",
        "    per_device_train_batch_size=4,\n",
        "    per_device_eval_batch_size=4,\n",
        "    gradient_accumulation_steps=4,\n",
        "    warmup_steps=100,\n",
        "    logging_steps=10,\n",
        "    save_steps=100,\n",
        "    evaluation_strategy=\"steps\",\n",
        "    eval_steps=50,\n",
        "    save_total_limit=2,\n",
        "    load_best_model_at_end=True,\n",
        "    fp16=True,\n",
        "    push_to_hub=False,  # Set to True to push to HF Hub\n",
        "    gradient_checkpointing=True,\n",
        "    optim=\"adamw_torch\",\n",
        "    learning_rate=2e-4,\n",
        "    lr_scheduler_type=\"cosine\",\n",
        ")\n",
        "\n",
        "# Initialize trainer\n",
        "trainer = Trainer(\n",
        "    model=model,\n",
        "    args=training_args,\n",
        "    train_dataset=train_dataset,\n",
        "    eval_dataset=eval_dataset,\n",
        "    data_collator=data_collator,\n",
        "    tokenizer=tokenizer,\n",
        ")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "# Start training\n",
        "print(\"Starting training...\")\n",
        "print(f\"Using {torch.cuda.device_count()} GPU(s)\")\n",
        "\n",
        "trainer.train()\n",
        "\n",
        "print(\"\\n✅ Training complete!\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "# Save model\n",
        "print(\"Saving model...\")\n",
        "trainer.save_model(\"./qwen-promptwizard-final\")\n",
        "tokenizer.save_pretrained(\"./qwen-promptwizard-final\")\n",
        "\n",
        "print(\"Model saved to ./qwen-promptwizard-final\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "# Test the fine-tuned model\n",
        "from transformers import pipeline\n",
        "\n",
        "# Load the fine-tuned model\n",
        "generator = pipeline(\n",
        "    \"text-generation\",\n",
        "    model=\"./qwen-promptwizard-final\",\n",
        "    tokenizer=tokenizer,\n",
        "    device_map=\"auto\"\n",
        ")\n",
        "\n",
        "# Test prompt\n",
        "test_prompt = \"\"\"<|system|>\n",
        "You are a mathematics expert. Solve grade school math problems step by step.\n",
        "<|user|>\n",
        "Janet has 3 apples. She buys 5 more apples from the store. How many apples does she have now?\n",
        "<|assistant|>\"\"\"\n",
        "\n",
        "# Generate response\n",
        "response = generator(\n",
        "    test_prompt,\n",
        "    max_new_tokens=200,\n",
        "    temperature=0.7,\n",
        "    do_sample=True\n",
        ")\n",
        "\n",
        "print(\"Test Response:\")\n",
        "print(response[0]['generated_text'])"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "## Next Steps\n",
        "\n",
        "1. **Push to HuggingFace Hub**: Set `push_to_hub=True` in training arguments\n",
        "2. **Increase Training**: Use more epochs and larger dataset for better results\n",
        "3. **Use Larger Model**: Try Qwen2.5-7B for better performance (needs more GPU memory)\n",
        "4. **Fine-tune Hyperparameters**: Adjust learning rate, LoRA rank, etc.\n",
        "\n",
        "The trained model can now be used with PromptWizard for enhanced prompt optimization!"
      ]
    }
  ],
  "metadata": {
    "kernelspec": {
      "display_name": "Python 3",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.10.0"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 4
}