File size: 9,983 Bytes
829e77a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
"""
PromptWizard Qwen Training โ€” Configurable Dataset & Repo
Fine-tunes Qwen using a user-selected dataset and optionally uploads
the trained model to a Hugging Face Hub repo asynchronously with logs.
"""

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
from peft import LoraConfig, get_peft_model, TaskType
from huggingface_hub import upload_folder, HfFolder
import os, asyncio, threading
from datetime import datetime

# ==== Async upload wrapper ====
def start_async_upload(local_dir, hf_repo, output_log):
    """Starts async model upload in a background thread."""
    def runner():
        output_log.append(f"[INFO] ๐Ÿš€ Async upload thread started for repo: {hf_repo}")
        asyncio.run(async_upload_model(local_dir, hf_repo, output_log))
        output_log.append(f"[INFO] ๐Ÿ›‘ Async upload thread finished for repo: {hf_repo}")
    threading.Thread(target=runner, daemon=True).start()


async def async_upload_model(local_dir, hf_repo, output_log, max_retries=3):
    """Upload model folder to HF Hub via HTTP API."""
    try:
        token = HfFolder.get_token()
        output_log.append(f"[INFO] โ˜๏ธ Preparing to upload to repo: {hf_repo}")
        attempt = 0
        while attempt < max_retries:
            try:
                output_log.append(f"[INFO] ๐Ÿ”„ Attempt {attempt+1} to upload folder via HTTP API...")
                upload_folder(folder_path=local_dir, repo_id=hf_repo, repo_type="model", token=token, ignore_patterns=["*.lock","*.tmp"], create_pr=False)
                output_log.append("[SUCCESS] โœ… Model successfully uploaded to HF Hub!")
                break
            except Exception as e:
                attempt += 1
                output_log.append(f"[ERROR] Upload attempt {attempt} failed: {e}")
                if attempt < max_retries:
                    output_log.append("[INFO] Retrying in 5 seconds...")
                    await asyncio.sleep(5)
                else:
                    output_log.append("[ERROR] โŒ Max retries reached. Upload failed.")
    except Exception as e:
        output_log.append(f"[ERROR] โŒ Unexpected error during upload: {e}")


# ==== GPU check ====
def check_gpu_status():
    return "๐Ÿš€ Zero GPU Ready - GPU will be allocated when training starts"

# ==== Logging helper ====
def log_message(output_log, msg):
    line = f"[{datetime.now().strftime('%H:%M:%S')}] {msg}"
    print(line)
    output_log.append(line)

# ==== Train model ====
@spaces.GPU(duration=300)
def train_model(base_model, dataset_name, num_epochs, batch_size, learning_rate, hf_repo):
    output_log = []
    test_split = 0.2
    mock_question = "Who is referred to as 'O best of Brahmanas' in the Bhagavad Gita?"

    try:
        log_message(output_log, "๐Ÿ” Initializing training sequence...")

        # ===== Device =====
        device = "cuda" if torch.cuda.is_available() else "cpu"
        log_message(output_log, f"๐ŸŽฎ Using device: {device}")
        if device == "cuda":
            log_message(output_log, f"โœ… GPU: {torch.cuda.get_device_name(0)}")

        # ===== Load dataset =====
        log_message(output_log, f"\n๐Ÿ“š Loading dataset: {dataset_name} ...")
        dataset = load_dataset(dataset_name)
        dataset = dataset["train"].train_test_split(test_size=test_split)
        train_dataset = dataset["train"]
        test_dataset = dataset["test"]

        log_message(output_log, f"   Training samples: {len(train_dataset)}")
        log_message(output_log, f"   Test samples: {len(test_dataset)}")

        # ===== Format examples =====
        def format_example(item):
            text = item.get("text") or item.get("content") or " ".join(str(v) for v in item.values())
            prompt = f"""<|system|>
You are a wise teacher interpreting Bhagavad Gita with deep insights.
<|user|>
{text}
<|assistant|>
"""
            return {"text": prompt}

        train_dataset = train_dataset.map(format_example)
        test_dataset = test_dataset.map(format_example)
        log_message(output_log, f"โœ… Formatted {len(train_dataset)} train + {len(test_dataset)} test examples")

        # ===== Load model & tokenizer =====
        log_message(output_log, f"\n๐Ÿค– Loading model: {base_model}")
        tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token

        model = AutoModelForCausalLM.from_pretrained(
            base_model,
            trust_remote_code=True,
            torch_dtype=torch.float16 if device == "cuda" else torch.float32,
            low_cpu_mem_usage=True,
        )
        if device == "cuda":
            model = model.to(device)
        log_message(output_log, "โœ… Model and tokenizer loaded successfully")

        # ===== LoRA configuration =====
        log_message(output_log, "\nโš™๏ธ Configuring LoRA for efficient fine-tuning...")
        lora_config = LoraConfig(task_type=TaskType.CAUSAL_LM, r=8, lora_alpha=16, lora_dropout=0.1, target_modules=["q_proj","v_proj"], bias="none")
        model = get_peft_model(model, lora_config)
        trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
        log_message(output_log, f"Trainable params after LoRA: {trainable_params:,}")

        # ===== Tokenization + labels =====
        def tokenize_fn(examples):
            tokenized = tokenizer(examples["text"], padding="max_length", truncation=True, max_length=256)
            tokenized["labels"] = tokenized["input_ids"].copy()
            return tokenized

        train_dataset = train_dataset.map(tokenize_fn, batched=True)
        test_dataset = test_dataset.map(tokenize_fn, batched=True)
        log_message(output_log, "โœ… Tokenization + labels done")

        # ===== Training arguments =====
        output_dir = "./qwen-gita-lora"
        training_args = TrainingArguments(
            output_dir=output_dir,
            num_train_epochs=num_epochs,
            per_device_train_batch_size=batch_size,
            gradient_accumulation_steps=2,
            warmup_steps=10,
            logging_steps=5,
            save_strategy="epoch",
            fp16=device=="cuda",
            optim="adamw_torch",
            learning_rate=learning_rate,
            max_steps=100,
        )

        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=train_dataset,
            eval_dataset=test_dataset,
            tokenizer=tokenizer,
        )

        # ===== Train =====
        log_message(output_log, "\n๐Ÿš€ Starting training...")
        trainer.train()
        log_message(output_log, "\nโœ… Training finished!")

        # ===== Test with mock question =====
        inputs = tokenizer(f"<|system|>\nYou are a wise teacher interpreting Bhagavad Gita.\n<|user|>\n{mock_question}\n<|assistant|>\n", return_tensors="pt").to(device)
        outputs = model.generate(**inputs, max_new_tokens=100)
        answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
        log_message(output_log, f"\n๐Ÿงช Mock Question Test:\nQ: {mock_question}\nA: {answer}")

        # ===== Save locally (optional upload later) =====
        trainer.save_model(output_dir)
        tokenizer.save_pretrained(output_dir)

        log_message(output_log, "\nโœ… Model saved locally. You can now review the mock answer before uploading.")

    except Exception as e:
        log_message(output_log, f"\nโŒ Error during training: {e}")

    return "\n".join(output_log), output_dir, mock_question

# ==== Gradio Interface ====
def create_interface():
    with gr.Blocks(title="PromptWizard โ€” Qwen Trainer") as demo:
        gr.Markdown("""
        # ๐Ÿง˜ PromptWizard Qwen Fine-tuning  
        Fine-tune Qwen on any dataset and optionally upload to HF Hub.
        """)

        with gr.Row():
            with gr.Column():
                gr.Textbox(label="GPU Status", value=check_gpu_status(), interactive=False)
                base_model = gr.Textbox(label="Base Model", value="Qwen/Qwen2.5-0.5B")
                dataset_name = gr.Textbox(label="Dataset Name", value="rahul7star/Gita")
                hf_repo = gr.Textbox(label="HF Repo for Upload", value="rahul7star/Qwen0.5-3B-Gita")
                num_epochs = gr.Slider(1, 3, value=1, step=1, label="Epochs")
                batch_size = gr.Slider(1, 4, value=2, step=1, label="Batch Size")
                learning_rate = gr.Number(value=5e-5, label="Learning Rate")
                train_btn = gr.Button("๐Ÿš€ Start Fine-tuning", variant="primary")
                upload_btn = gr.Button("โ˜๏ธ Upload Model to HF Hub", variant="secondary", interactive=False)

            with gr.Column():
                output = gr.Textbox(label="Training Log", lines=25, max_lines=40,
                                    value="Click 'Start Fine-tuning' to train your model.")

        # ==== Train button ====
        def train_click(base_model, dataset_name, num_epochs, batch_size, learning_rate, hf_repo):
            log, output_dir, mock_question = train_model(base_model, dataset_name, num_epochs, batch_size, learning_rate, hf_repo)
            return log, True, output_dir

        train_btn.click(
            fn=train_click,
            inputs=[base_model, dataset_name, num_epochs, batch_size, learning_rate, hf_repo],
            outputs=[output, upload_btn, hf_repo],
        )

        # ==== Upload button ====
        def upload_click(hf_repo):
            output_log = []
            start_async_upload("./qwen-gita-lora", hf_repo, output_log)
            return "\n".join(output_log)

        upload_btn.click(
            fn=upload_click,
            inputs=[hf_repo],
            outputs=output,
        )

    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(server_name="0.0.0.0", server_port=7860)