Spaces:
Sleeping
Sleeping
File size: 9,466 Bytes
829e77a 519cd24 829e77a 519cd24 829e77a 519cd24 829e77a 519cd24 829e77a 519cd24 829e77a 519cd24 829e77a 519cd24 829e77a 519cd24 829e77a 519cd24 829e77a 519cd24 829e77a 519cd24 829e77a 519cd24 829e77a 519cd24 829e77a 519cd24 829e77a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
"""
PromptWizard Qwen Training โ Configurable Dataset & Repo
Fine-tunes Qwen using a user-selected dataset and optionally uploads
the trained model to a Hugging Face Hub repo asynchronously with logs.
"""
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
from peft import LoraConfig, get_peft_model, TaskType
from huggingface_hub import upload_folder, HfFolder
import os, asyncio, threading
from datetime import datetime
# ==== Async upload wrapper ====
def start_async_upload(local_dir, hf_repo, output_log):
"""Starts async model upload in a background thread."""
def runner():
output_log.append(f"[INFO] ๐ Async upload thread started for repo: {hf_repo}")
asyncio.run(async_upload_model(local_dir, hf_repo, output_log))
output_log.append(f"[INFO] ๐ Async upload thread finished for repo: {hf_repo}")
threading.Thread(target=runner, daemon=True).start()
async def async_upload_model(local_dir, hf_repo, output_log, max_retries=3):
"""Upload model folder to HF Hub via HTTP API."""
try:
token = HfFolder.get_token()
output_log.append(f"[INFO] โ๏ธ Preparing to upload to repo: {hf_repo}")
attempt = 0
while attempt < max_retries:
try:
output_log.append(f"[INFO] ๐ Attempt {attempt+1} to upload folder via HTTP API...")
upload_folder(folder_path=local_dir, repo_id=hf_repo, repo_type="model", token=token, ignore_patterns=["*.lock","*.tmp"], create_pr=False)
output_log.append("[SUCCESS] โ
Model successfully uploaded to HF Hub!")
break
except Exception as e:
attempt += 1
output_log.append(f"[ERROR] Upload attempt {attempt} failed: {e}")
if attempt < max_retries:
output_log.append("[INFO] Retrying in 5 seconds...")
await asyncio.sleep(5)
else:
output_log.append("[ERROR] โ Max retries reached. Upload failed.")
except Exception as e:
output_log.append(f"[ERROR] โ Unexpected error during upload: {e}")
# ==== GPU check ====
def check_gpu_status():
return "๐ Zero GPU Ready - GPU will be allocated when training starts"
# ==== Logging helper ====
def log_message(output_log, msg):
line = f"[{datetime.now().strftime('%H:%M:%S')}] {msg}"
print(line)
output_log.append(line)
# ==== Train model ====
@spaces.GPU(duration=300)
def train_model(base_model, dataset_name, num_epochs, batch_size, learning_rate):
output_log = []
test_split = 0.2
try:
log_message(output_log, "๐ Initializing training sequence...")
# ===== Device =====
device = "cuda" if torch.cuda.is_available() else "cpu"
log_message(output_log, f"๐ฎ Using device: {device}")
if device == "cuda":
log_message(output_log, f"โ
GPU: {torch.cuda.get_device_name(0)}")
# ===== Load dataset =====
log_message(output_log, f"\n๐ Loading dataset: {dataset_name} ...")
dataset = load_dataset(dataset_name)
dataset = dataset["train"].train_test_split(test_size=test_split)
train_dataset = dataset["train"]
test_dataset = dataset["test"]
# ===== Format examples =====
def format_example(item):
text = item.get("text") or item.get("content") or " ".join(str(v) for v in item.values())
prompt = f"""<|system|>
You are a wise teacher interpreting Bhagavad Gita with deep insights.
<|user|>
{text}
<|assistant|>
"""
return {"text": prompt}
train_dataset = train_dataset.map(format_example)
test_dataset = test_dataset.map(format_example)
log_message(output_log, f"โ
Formatted {len(train_dataset)} train + {len(test_dataset)} test examples")
# ===== Load model & tokenizer =====
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
base_model,
trust_remote_code=True,
torch_dtype=torch.float16 if device=="cuda" else torch.float32,
low_cpu_mem_usage=True
)
if device == "cuda":
model = model.to(device)
# ===== LoRA configuration =====
lora_config = LoraConfig(task_type=TaskType.CAUSAL_LM, r=8, lora_alpha=16, lora_dropout=0.1, target_modules=["q_proj","v_proj"], bias="none")
model = get_peft_model(model, lora_config)
# ===== Tokenization + labels =====
def tokenize_fn(examples):
tokenized = tokenizer(examples["text"], padding="max_length", truncation=True, max_length=256)
tokenized["labels"] = tokenized["input_ids"].copy()
return tokenized
train_dataset = train_dataset.map(tokenize_fn, batched=True)
test_dataset = test_dataset.map(tokenize_fn, batched=True)
# ===== Training =====
output_dir = "./qwen-gita-lora"
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=num_epochs,
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=2,
warmup_steps=10,
logging_steps=5,
save_strategy="epoch",
fp16=device=="cuda",
optim="adamw_torch",
learning_rate=learning_rate,
max_steps=100
)
trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset, eval_dataset=test_dataset, tokenizer=tokenizer)
log_message(output_log, "\n๐ Starting training...")
trainer.train()
trainer.save_model(output_dir)
tokenizer.save_pretrained(output_dir)
log_message(output_log, "\nโ
Training finished and model saved locally.")
return "\n".join(output_log), model, tokenizer, output_dir
except Exception as e:
log_message(output_log, f"\nโ Error during training: {e}")
return "\n".join(output_log), None, None, None
# ==== Gradio Interface ====
def create_interface():
with gr.Blocks(title="PromptWizard โ Qwen Trainer") as demo:
gr.Markdown("""
# ๐ง PromptWizard Qwen Fine-tuning
Fine-tune Qwen and interact with it before optional upload.
""")
with gr.Row():
with gr.Column():
gr.Textbox(label="GPU Status", value=check_gpu_status(), interactive=False)
base_model = gr.Textbox(label="Base Model", value="Qwen/Qwen2.5-0.5B")
dataset_name = gr.Textbox(label="Dataset Name", value="rahul7star/Gita")
hf_repo = gr.Textbox(label="HF Repo for Upload", value="rahul7star/Qwen0.5-3B-Gita")
num_epochs = gr.Slider(1, 3, value=1, step=1, label="Epochs")
batch_size = gr.Slider(1, 4, value=2, step=1, label="Batch Size")
learning_rate = gr.Number(value=5e-5, label="Learning Rate")
train_btn = gr.Button("๐ Start Fine-tuning", variant="primary")
upload_btn = gr.Button("โ๏ธ Upload Model to HF Hub", variant="secondary", interactive=False)
with gr.Column():
output = gr.Textbox(label="Training Log", lines=25, max_lines=40,
value="Click 'Start Fine-tuning' to train your model.")
user_question = gr.Textbox(label="Ask your own question", placeholder="Type a question...")
answer_box = gr.Textbox(label="Answer", lines=5, interactive=False)
# ==== Train button ====
def train_click(base_model, dataset_name, num_epochs, batch_size, learning_rate):
log, model, tokenizer, output_dir = train_model(base_model, dataset_name, num_epochs, batch_size, learning_rate)
return log, True, model, tokenizer, output_dir
train_btn.click(
fn=train_click,
inputs=[base_model, dataset_name, num_epochs, batch_size, learning_rate],
outputs=[output, upload_btn, gr.State(), gr.State(), gr.State()],
)
# ==== User question ====
def ask_question(user_input, model, tokenizer):
if not model or not tokenizer:
return "Model not loaded yet."
device = "cuda" if torch.cuda.is_available() else "cpu"
inputs = tokenizer(f"<|system|>\nYou are a wise teacher interpreting Bhagavad Gita.\n<|user|>\n{user_input}\n<|assistant|>\n", return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_new_tokens=100)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
user_question.submit(ask_question, inputs=[user_question, gr.State(), gr.State()], outputs=[answer_box])
# ==== Upload button ====
def upload_click(hf_repo):
output_log = []
start_async_upload("./qwen-gita-lora", hf_repo, output_log)
return "\n".join(output_log)
upload_btn.click(upload_click, inputs=[hf_repo], outputs=[output])
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(server_name="0.0.0.0", server_port=7860)
|