Spaces:
Paused
Paused
| """ | |
| This module provides the implementation of an Audio Projection Model, which is designed for | |
| audio processing tasks. The model takes audio embeddings as input and outputs context tokens | |
| that can be used for various downstream applications, such as audio analysis or synthesis. | |
| The AudioProjModel class is based on the ModelMixin class from the diffusers library, which | |
| provides a foundation for building custom models. This implementation includes multiple linear | |
| layers with ReLU activation functions and a LayerNorm for normalization. | |
| Key Features: | |
| - Audio embedding input with flexible sequence length and block structure. | |
| - Multiple linear layers for feature transformation. | |
| - ReLU activation for non-linear transformation. | |
| - LayerNorm for stabilizing and speeding up training. | |
| - Rearrangement of input embeddings to match the model's expected input shape. | |
| - Customizable number of blocks, channels, and context tokens for adaptability. | |
| The module is structured to be easily integrated into larger systems or used as a standalone | |
| component for audio feature extraction and processing. | |
| Classes: | |
| - AudioProjModel: A class representing the audio projection model with configurable parameters. | |
| Functions: | |
| - (none) | |
| Dependencies: | |
| - torch: For tensor operations and neural network components. | |
| - diffusers: For the ModelMixin base class. | |
| - einops: For tensor rearrangement operations. | |
| """ | |
| import torch | |
| from diffusers import ModelMixin | |
| from einops import rearrange | |
| import math | |
| import torch.nn as nn | |
| from .parallel_states import ( | |
| initialize_sequence_parallel_state, | |
| nccl_info, | |
| get_sequence_parallel_state, | |
| parallel_attention, | |
| all_gather, | |
| all_to_all_4D, | |
| ) | |
| class AudioProjNet2(ModelMixin): | |
| """Audio Projection Model | |
| This class defines an audio projection model that takes audio embeddings as input | |
| and produces context tokens as output. The model is based on the ModelMixin class | |
| and consists of multiple linear layers and activation functions. It can be used | |
| for various audio processing tasks. | |
| Attributes: | |
| seq_len (int): The length of the audio sequence. | |
| blocks (int): The number of blocks in the audio projection model. | |
| channels (int): The number of channels in the audio projection model. | |
| intermediate_dim (int): The intermediate dimension of the model. | |
| context_tokens (int): The number of context tokens in the output. | |
| output_dim (int): The output dimension of the context tokens. | |
| Methods: | |
| __init__(self, seq_len=5, blocks=12, channels=768, intermediate_dim=512, context_tokens=32, output_dim=768): | |
| Initializes the AudioProjModel with the given parameters. | |
| forward(self, audio_embeds): | |
| Defines the forward pass for the AudioProjModel. | |
| Parameters: | |
| audio_embeds (torch.Tensor): The input audio embeddings with shape (batch_size, video_length, blocks, channels). | |
| Returns: | |
| context_tokens (torch.Tensor): The output context tokens with shape (batch_size, video_length, context_tokens, output_dim). | |
| """ | |
| def __init__( | |
| self, | |
| seq_len=5, | |
| blocks=12, # add a new parameter blocks | |
| channels=768, # add a new parameter channels | |
| intermediate_dim=512, | |
| output_dim=768, | |
| context_tokens=4, | |
| ): | |
| super().__init__() | |
| self.seq_len = seq_len | |
| self.blocks = blocks | |
| self.channels = channels | |
| self.input_dim = ( | |
| seq_len * blocks * channels | |
| ) | |
| self.intermediate_dim = intermediate_dim | |
| self.context_tokens = context_tokens | |
| self.output_dim = output_dim | |
| # define multiple linear layers | |
| self.proj1 = nn.Linear(self.input_dim, intermediate_dim) | |
| self.proj2 = nn.Linear(intermediate_dim, intermediate_dim) | |
| self.proj3 = nn.Linear(intermediate_dim, context_tokens * output_dim) | |
| self.norm = nn.LayerNorm(output_dim) | |
| def forward(self, audio_embeds): | |
| video_length = audio_embeds.shape[1] | |
| audio_embeds = rearrange(audio_embeds, "bz f w b c -> (bz f) w b c") | |
| batch_size, window_size, blocks, channels = audio_embeds.shape | |
| audio_embeds = audio_embeds.view(batch_size, window_size * blocks * channels) | |
| audio_embeds = torch.relu(self.proj1(audio_embeds)) | |
| audio_embeds = torch.relu(self.proj2(audio_embeds)) | |
| context_tokens = self.proj3(audio_embeds).reshape( | |
| batch_size, self.context_tokens, self.output_dim | |
| ) | |
| context_tokens = self.norm(context_tokens) | |
| out_all = rearrange( | |
| context_tokens, "(bz f) m c -> bz f m c", f=video_length | |
| ) | |
| return out_all | |
| def reshape_tensor(x, heads): | |
| bs, length, width = x.shape | |
| # (bs, length, width) --> (bs, length, n_heads, dim_per_head) | |
| x = x.view(bs, length, heads, -1) | |
| # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head) | |
| x = x.transpose(1, 2) | |
| # (bs, n_heads, length, dim_per_head) | |
| x = x.reshape(bs, heads, length, -1) | |
| return x | |
| class PerceiverAttentionCA(nn.Module): | |
| def __init__(self, *, dim=3072, dim_head=1024, heads=33): | |
| super().__init__() | |
| self.scale = dim_head ** -0.5 | |
| self.dim_head = dim_head | |
| self.heads = heads | |
| inner_dim = dim_head #* heads | |
| self.norm1 = nn.LayerNorm(dim) | |
| self.norm2 = nn.LayerNorm(dim) | |
| self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
| self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) | |
| self.to_out = nn.Linear(inner_dim, dim, bias=False) | |
| import torch.nn.init as init | |
| init.zeros_(self.to_out.weight) | |
| if self.to_out.bias is not None: | |
| init.zeros_(self.to_out.bias) | |
| def forward(self, x, latents): | |
| """ | |
| Args: | |
| x (torch.Tensor): image features | |
| shape (b, t, aa, D) | |
| latent (torch.Tensor): latent features | |
| shape (b, t, hw, D) | |
| """ | |
| x = self.norm1(x) | |
| latents = self.norm2(latents) | |
| # print("latents shape: ", latents.shape) | |
| # print("x shape: ", x.shape) | |
| q = self.to_q(latents) | |
| k, v = self.to_kv(x).chunk(2, dim=-1) | |
| # attention | |
| scale = 1 / math.sqrt(math.sqrt(self.dim_head)) | |
| weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards | |
| weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) | |
| out = weight @ v | |
| # out = out.permute(0, 2, 1, 3) | |
| return self.to_out(out) | |
| #def forward(self, x, latents): | |
| # """ | |
| # Args: | |
| # x (torch.Tensor): image features | |
| # shape (b, t, aa, D) | |
| # latent (torch.Tensor): latent features | |
| # shape (b, t, hw, D) | |
| # """ | |
| # if get_sequence_parallel_state(): | |
| # sp_size = nccl_info.sp_size | |
| # sp_rank = nccl_info.rank_within_group | |
| # print("rank:", latents.shape, sp_size, sp_rank) | |
| # latents = torch.chunk(latents, sp_size, dim=1)[sp_rank] | |
| # x = self.norm1(x) | |
| # latents = self.norm2(latents) | |
| # # print("latents shape: ", latents.shape) | |
| # # print("x shape: ", x.shape) | |
| # q = self.to_q(latents) | |
| # k, v = self.to_kv(x).chunk(2, dim=-1) | |
| # # print("q, k, v: ", q.shape, k.shape, v.shape) | |
| # # attention | |
| # #scale = 1 / math.sqrt(math.sqrt(self.dim_head)) | |
| # #weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards | |
| # #weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) | |
| # #out = weight @ v | |
| # def shrink_head(encoder_state, dim): | |
| # local_heads = encoder_state.shape[dim] // nccl_info.sp_size | |
| # return encoder_state.narrow(dim, nccl_info.rank_within_group * local_heads, local_heads) | |
| # if get_sequence_parallel_state(): | |
| # # batch_size, seq_len, attn_heads, head_dim | |
| # q = all_to_all_4D(q, scatter_dim=2, gather_dim=1) # [2, 32256, 24, 128] | |
| # k = shrink_head(k ,dim=2) | |
| # v = shrink_head(v ,dim=2) | |
| # qkv = torch.stack([query, key, value], dim=2) | |
| # attn = flash_attn_no_pad(qkv, causal=False, dropout_p=0.0, softmax_scale=None) | |
| # # out = out.permute(0, 2, 1, 3) | |
| # #b, s, a, d = attn.shape | |
| # #attn = attn.reshape(b, s, -1) | |
| # | |
| # out = self.to_out(attn) | |
| # if get_sequence_parallel_state(): | |
| # out = all_gather(out, dim=1) | |
| # return out | |