Spaces:
Runtime error
Runtime error
Merge remote-tracking branch 'upstream/main'
Browse files- README.md +1 -1
- app.py +260 -107
- app_batched.py +4 -2
README.md
CHANGED
|
@@ -5,7 +5,7 @@ tags:
|
|
| 5 |
- music generation
|
| 6 |
- language models
|
| 7 |
- LLMs
|
| 8 |
-
app_file:
|
| 9 |
emoji: 🎵
|
| 10 |
colorFrom: white
|
| 11 |
colorTo: blue
|
|
|
|
| 5 |
- music generation
|
| 6 |
- language models
|
| 7 |
- LLMs
|
| 8 |
+
app_file: app.py
|
| 9 |
emoji: 🎵
|
| 10 |
colorFrom: white
|
| 11 |
colorTo: blue
|
app.py
CHANGED
|
@@ -7,14 +7,18 @@ LICENSE file in the root directory of this source tree.
|
|
| 7 |
"""
|
| 8 |
|
| 9 |
from tempfile import NamedTemporaryFile
|
|
|
|
| 10 |
import torch
|
|
|
|
| 11 |
import gradio as gr
|
|
|
|
| 12 |
from audiocraft.models import MusicGen
|
| 13 |
-
|
| 14 |
from audiocraft.data.audio import audio_write
|
| 15 |
|
|
|
|
| 16 |
|
| 17 |
MODEL = None
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
def load_model(version):
|
|
@@ -22,14 +26,18 @@ def load_model(version):
|
|
| 22 |
return MusicGen.get_pretrained(version)
|
| 23 |
|
| 24 |
|
| 25 |
-
def predict(
|
|
|
|
|
|
|
| 26 |
global MODEL
|
| 27 |
topk = int(topk)
|
| 28 |
-
if MODEL is None
|
| 29 |
-
MODEL = load_model(
|
| 30 |
|
| 31 |
if duration > MODEL.lm.cfg.dataset.segment_duration:
|
| 32 |
raise gr.Error("MusicGen currently supports durations of up to 30 seconds!")
|
|
|
|
|
|
|
| 33 |
MODEL.set_generation_params(
|
| 34 |
use_sampling=True,
|
| 35 |
top_k=topk,
|
|
@@ -39,120 +47,265 @@ def predict(model, text, melody, duration, topk, topp, temperature, cfg_coef):
|
|
| 39 |
duration=duration,
|
| 40 |
)
|
| 41 |
|
| 42 |
-
if
|
| 43 |
-
|
| 44 |
-
|
| 45 |
if melody.dim() == 2:
|
| 46 |
melody = melody[None]
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
else:
|
| 55 |
output = MODEL.generate(descriptions=[text], progress=False)
|
| 56 |
|
| 57 |
output = output.detach().cpu().float()[0]
|
| 58 |
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
|
| 59 |
-
audio_write(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
waveform_video = gr.make_waveform(file.name)
|
| 61 |
-
return waveform_video
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
"melody"
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
],
|
| 127 |
-
[
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
],
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
)
|
| 136 |
-
|
| 137 |
-
"""
|
| 138 |
-
### More details
|
| 139 |
-
|
| 140 |
-
The model will generate a short music extract based on the description you provided.
|
| 141 |
-
You can generate up to 30 seconds of audio.
|
| 142 |
-
|
| 143 |
-
We present 4 model variations:
|
| 144 |
-
1. Melody -- a music generation model capable of generating music condition on text and melody inputs. **Note**, you can also use text only.
|
| 145 |
-
2. Small -- a 300M transformer decoder conditioned on text only.
|
| 146 |
-
3. Medium -- a 1.5B transformer decoder conditioned on text only.
|
| 147 |
-
4. Large -- a 3.3B transformer decoder conditioned on text only (might OOM for the longest sequences.)
|
| 148 |
-
|
| 149 |
-
When using `melody`, ou can optionaly provide a reference audio from
|
| 150 |
-
which a broad melody will be extracted. The model will then try to follow both the description and melody provided.
|
| 151 |
-
|
| 152 |
-
You can also use your own GPU or a Google Colab by following the instructions on our repo.
|
| 153 |
-
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
|
| 154 |
-
for more details.
|
| 155 |
-
"""
|
| 156 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
"""
|
| 8 |
|
| 9 |
from tempfile import NamedTemporaryFile
|
| 10 |
+
import argparse
|
| 11 |
import torch
|
| 12 |
+
import torchaudio
|
| 13 |
import gradio as gr
|
| 14 |
+
import os
|
| 15 |
from audiocraft.models import MusicGen
|
|
|
|
| 16 |
from audiocraft.data.audio import audio_write
|
| 17 |
|
| 18 |
+
from share_btn import community_icon_html, loading_icon_html, share_js, css
|
| 19 |
|
| 20 |
MODEL = None
|
| 21 |
+
IS_SHARED_SPACE = "radames/MusicGen-Continuation" in os.environ.get("SPACE_ID", "")
|
| 22 |
|
| 23 |
|
| 24 |
def load_model(version):
|
|
|
|
| 26 |
return MusicGen.get_pretrained(version)
|
| 27 |
|
| 28 |
|
| 29 |
+
def predict(
|
| 30 |
+
text, melody_input, duration, continuation, topk, topp, temperature, cfg_coef
|
| 31 |
+
):
|
| 32 |
global MODEL
|
| 33 |
topk = int(topk)
|
| 34 |
+
if MODEL is None:
|
| 35 |
+
MODEL = load_model("melody")
|
| 36 |
|
| 37 |
if duration > MODEL.lm.cfg.dataset.segment_duration:
|
| 38 |
raise gr.Error("MusicGen currently supports durations of up to 30 seconds!")
|
| 39 |
+
if continuation >= duration:
|
| 40 |
+
raise gr.Error("The continuation setting can't be higher or equal to duration!")
|
| 41 |
MODEL.set_generation_params(
|
| 42 |
use_sampling=True,
|
| 43 |
top_k=topk,
|
|
|
|
| 47 |
duration=duration,
|
| 48 |
)
|
| 49 |
|
| 50 |
+
if melody_input:
|
| 51 |
+
melody, sr = torchaudio.load(melody_input)
|
| 52 |
+
# sr, melody = melody_input[0], torch.from_numpy(melody_input[1]).to(MODEL.device).float().t().unsqueeze(0)
|
| 53 |
if melody.dim() == 2:
|
| 54 |
melody = melody[None]
|
| 55 |
+
if continuation:
|
| 56 |
+
prompt_waveform = melody[..., -int(sr * continuation) :]
|
| 57 |
+
output = MODEL.generate_continuation(
|
| 58 |
+
prompt=prompt_waveform,
|
| 59 |
+
prompt_sample_rate=sr,
|
| 60 |
+
descriptions=[text],
|
| 61 |
+
progress=True,
|
| 62 |
+
)
|
| 63 |
+
else:
|
| 64 |
+
melody_wavform = melody[
|
| 65 |
+
..., : int(sr * MODEL.lm.cfg.dataset.segment_duration)
|
| 66 |
+
]
|
| 67 |
+
output = MODEL.generate_with_chroma(
|
| 68 |
+
descriptions=[text],
|
| 69 |
+
melody_wavs=melody_wavform,
|
| 70 |
+
melody_sample_rate=sr,
|
| 71 |
+
progress=True,
|
| 72 |
+
)
|
| 73 |
else:
|
| 74 |
output = MODEL.generate(descriptions=[text], progress=False)
|
| 75 |
|
| 76 |
output = output.detach().cpu().float()[0]
|
| 77 |
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
|
| 78 |
+
audio_write(
|
| 79 |
+
file.name,
|
| 80 |
+
output,
|
| 81 |
+
MODEL.sample_rate,
|
| 82 |
+
strategy="loudness",
|
| 83 |
+
loudness_headroom_db=16,
|
| 84 |
+
loudness_compressor=True,
|
| 85 |
+
add_suffix=False,
|
| 86 |
+
)
|
| 87 |
waveform_video = gr.make_waveform(file.name)
|
| 88 |
+
return waveform_video, melody_input
|
| 89 |
|
| 90 |
+
|
| 91 |
+
def ui(**kwargs):
|
| 92 |
+
def toggle(choice):
|
| 93 |
+
if choice == "mic":
|
| 94 |
+
return gr.update(source="microphone", value=None, label="Microphone")
|
| 95 |
+
else:
|
| 96 |
+
return gr.update(source="upload", value=None, label="File")
|
| 97 |
+
|
| 98 |
+
with gr.Blocks(css=css) as interface:
|
| 99 |
+
gr.Markdown(
|
| 100 |
+
"""
|
| 101 |
+
# MusicGen
|
| 102 |
+
This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation
|
| 103 |
+
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
|
| 104 |
+
"""
|
| 105 |
+
)
|
| 106 |
+
if IS_SHARED_SPACE:
|
| 107 |
+
gr.Markdown(
|
| 108 |
+
"""
|
| 109 |
+
⚠ This Space doesn't work in this shared UI ⚠
|
| 110 |
+
|
| 111 |
+
<a href="https://huggingface.co/spaces/musicgen/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
|
| 112 |
+
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
| 113 |
+
to use it privately, or use the <a href="https://huggingface.co/spaces/facebook/MusicGen">public demo</a>
|
| 114 |
+
"""
|
| 115 |
+
)
|
| 116 |
+
with gr.Row():
|
| 117 |
+
with gr.Column():
|
| 118 |
+
with gr.Row():
|
| 119 |
+
text = gr.Text(
|
| 120 |
+
label="Describe your music",
|
| 121 |
+
lines=2,
|
| 122 |
+
interactive=True,
|
| 123 |
+
elem_id="text-input",
|
| 124 |
+
)
|
| 125 |
+
with gr.Column():
|
| 126 |
+
radio = gr.Radio(
|
| 127 |
+
["file", "mic"],
|
| 128 |
+
value="file",
|
| 129 |
+
label="Melody Condition (optional) File or Mic",
|
| 130 |
+
)
|
| 131 |
+
melody = gr.Audio(
|
| 132 |
+
source="upload",
|
| 133 |
+
type="filepath",
|
| 134 |
+
label="File",
|
| 135 |
+
interactive=True,
|
| 136 |
+
elem_id="melody-input",
|
| 137 |
+
)
|
| 138 |
+
with gr.Row():
|
| 139 |
+
submit = gr.Button("Submit")
|
| 140 |
+
# with gr.Row():
|
| 141 |
+
# model = gr.Radio(
|
| 142 |
+
# ["melody", "medium", "small", "large"],
|
| 143 |
+
# label="Model",
|
| 144 |
+
# value="melody",
|
| 145 |
+
# interactive=True,
|
| 146 |
+
# )
|
| 147 |
+
with gr.Row():
|
| 148 |
+
duration = gr.Slider(
|
| 149 |
+
minimum=1,
|
| 150 |
+
maximum=30,
|
| 151 |
+
value=10,
|
| 152 |
+
label="Duration",
|
| 153 |
+
interactive=True,
|
| 154 |
+
)
|
| 155 |
+
with gr.Row():
|
| 156 |
+
continuation = gr.Slider(
|
| 157 |
+
minimum=0,
|
| 158 |
+
maximum=30,
|
| 159 |
+
value=0,
|
| 160 |
+
label="Continue from the end duration",
|
| 161 |
+
interactive=True,
|
| 162 |
+
)
|
| 163 |
+
with gr.Row():
|
| 164 |
+
topk = gr.Number(label="Top-k", value=250, interactive=True)
|
| 165 |
+
topp = gr.Number(label="Top-p", value=0, interactive=True)
|
| 166 |
+
temperature = gr.Number(
|
| 167 |
+
label="Temperature", value=1.0, interactive=True
|
| 168 |
+
)
|
| 169 |
+
cfg_coef = gr.Number(
|
| 170 |
+
label="Classifier Free Guidance", value=3.0, interactive=True
|
| 171 |
+
)
|
| 172 |
+
with gr.Column():
|
| 173 |
+
output = gr.Video(label="Generated Music", elem_id="generated-video")
|
| 174 |
+
output_melody = gr.Audio(label="Melody ", elem_id="melody-output")
|
| 175 |
+
with gr.Row(visible=False) as share_row:
|
| 176 |
+
with gr.Group(elem_id="share-btn-container"):
|
| 177 |
+
community_icon = gr.HTML(community_icon_html)
|
| 178 |
+
loading_icon = gr.HTML(loading_icon_html)
|
| 179 |
+
share_button = gr.Button(
|
| 180 |
+
"Share to community", elem_id="share-btn"
|
| 181 |
+
)
|
| 182 |
+
share_button.click(None, [], [], _js=share_js)
|
| 183 |
+
submit.click(
|
| 184 |
+
lambda x: gr.update(visible=False),
|
| 185 |
+
None,
|
| 186 |
+
[share_row],
|
| 187 |
+
queue=False,
|
| 188 |
+
show_progress=False,
|
| 189 |
+
).then(
|
| 190 |
+
predict,
|
| 191 |
+
inputs=[
|
| 192 |
+
text,
|
| 193 |
+
melody,
|
| 194 |
+
duration,
|
| 195 |
+
continuation,
|
| 196 |
+
topk,
|
| 197 |
+
topp,
|
| 198 |
+
temperature,
|
| 199 |
+
cfg_coef,
|
| 200 |
],
|
| 201 |
+
outputs=[output, output_melody],
|
| 202 |
+
).then(
|
| 203 |
+
lambda x: gr.update(visible=True),
|
| 204 |
+
None,
|
| 205 |
+
[share_row],
|
| 206 |
+
queue=False,
|
| 207 |
+
show_progress=False,
|
| 208 |
+
)
|
| 209 |
+
radio.change(toggle, radio, [melody], queue=False, show_progress=False)
|
| 210 |
+
gr.Examples(
|
| 211 |
+
fn=predict,
|
| 212 |
+
examples=[
|
| 213 |
+
[
|
| 214 |
+
"An 80s driving pop song with heavy drums and synth pads in the background",
|
| 215 |
+
"./assets/bach.mp3",
|
| 216 |
+
],
|
| 217 |
+
[
|
| 218 |
+
"A cheerful country song with acoustic guitars",
|
| 219 |
+
"./assets/bolero_ravel.mp3",
|
| 220 |
+
],
|
| 221 |
+
["90s rock song with electric guitar and heavy drums", None, "medium"],
|
| 222 |
+
[
|
| 223 |
+
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
|
| 224 |
+
"./assets/bach.mp3",
|
| 225 |
+
],
|
| 226 |
+
[
|
| 227 |
+
"lofi slow bpm electro chill with organic samples",
|
| 228 |
+
None,
|
| 229 |
+
],
|
| 230 |
],
|
| 231 |
+
inputs=[text, melody],
|
| 232 |
+
outputs=[output],
|
| 233 |
+
)
|
| 234 |
+
gr.Markdown(
|
| 235 |
+
"""
|
| 236 |
+
### More details
|
| 237 |
+
|
| 238 |
+
The model will generate a short music extract based on the description you provided.
|
| 239 |
+
You can generate up to 30 seconds of audio.
|
| 240 |
+
|
| 241 |
+
We present 4 model variations:
|
| 242 |
+
1. Melody -- a music generation model capable of generating music condition on text and melody inputs. **Note**, you can also use text only.
|
| 243 |
+
2. Small -- a 300M transformer decoder conditioned on text only.
|
| 244 |
+
3. Medium -- a 1.5B transformer decoder conditioned on text only.
|
| 245 |
+
4. Large -- a 3.3B transformer decoder conditioned on text only (might OOM for the longest sequences.)
|
| 246 |
+
|
| 247 |
+
When using `melody`, ou can optionaly provide a reference audio from
|
| 248 |
+
which a broad melody will be extracted. The model will then try to follow both the description and melody provided.
|
| 249 |
+
|
| 250 |
+
You can also use your own GPU or a Google Colab by following the instructions on our repo.
|
| 251 |
+
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
|
| 252 |
+
for more details.
|
| 253 |
+
"""
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
# Show the interface
|
| 257 |
+
launch_kwargs = {}
|
| 258 |
+
username = kwargs.get("username")
|
| 259 |
+
password = kwargs.get("password")
|
| 260 |
+
server_port = kwargs.get("server_port", 0)
|
| 261 |
+
inbrowser = kwargs.get("inbrowser", False)
|
| 262 |
+
share = kwargs.get("share", False)
|
| 263 |
+
server_name = kwargs.get("listen")
|
| 264 |
+
|
| 265 |
+
launch_kwargs["server_name"] = server_name
|
| 266 |
+
|
| 267 |
+
if username and password:
|
| 268 |
+
launch_kwargs["auth"] = (username, password)
|
| 269 |
+
if server_port > 0:
|
| 270 |
+
launch_kwargs["server_port"] = server_port
|
| 271 |
+
if inbrowser:
|
| 272 |
+
launch_kwargs["inbrowser"] = inbrowser
|
| 273 |
+
if share:
|
| 274 |
+
launch_kwargs["share"] = share
|
| 275 |
+
|
| 276 |
+
interface.queue().launch(**launch_kwargs, max_threads=1)
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
if __name__ == "__main__":
|
| 280 |
+
parser = argparse.ArgumentParser()
|
| 281 |
+
parser.add_argument(
|
| 282 |
+
"--listen",
|
| 283 |
+
type=str,
|
| 284 |
+
default="127.0.0.1",
|
| 285 |
+
help="IP to listen on for connections to Gradio",
|
| 286 |
+
)
|
| 287 |
+
parser.add_argument(
|
| 288 |
+
"--username", type=str, default="", help="Username for authentication"
|
| 289 |
)
|
| 290 |
+
parser.add_argument(
|
| 291 |
+
"--password", type=str, default="", help="Password for authentication"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
)
|
| 293 |
+
parser.add_argument(
|
| 294 |
+
"--server_port",
|
| 295 |
+
type=int,
|
| 296 |
+
default=0,
|
| 297 |
+
help="Port to run the server listener on",
|
| 298 |
+
)
|
| 299 |
+
parser.add_argument("--inbrowser", action="store_true", help="Open in browser")
|
| 300 |
+
parser.add_argument("--share", action="store_true", help="Share the gradio UI")
|
| 301 |
+
|
| 302 |
+
args = parser.parse_args()
|
| 303 |
|
| 304 |
+
ui(
|
| 305 |
+
username=args.username,
|
| 306 |
+
password=args.password,
|
| 307 |
+
inbrowser=args.inbrowser,
|
| 308 |
+
server_port=args.server_port,
|
| 309 |
+
share=args.share,
|
| 310 |
+
listen=args.listen,
|
| 311 |
+
)
|
app_batched.py
CHANGED
|
@@ -67,10 +67,13 @@ def predict(texts, melodies):
|
|
| 67 |
output,
|
| 68 |
MODEL.sample_rate,
|
| 69 |
strategy="loudness",
|
|
|
|
|
|
|
| 70 |
add_suffix=False,
|
| 71 |
)
|
| 72 |
waveform_video = gr.make_waveform(file.name)
|
| 73 |
out_files.append(waveform_video)
|
|
|
|
| 74 |
return [out_files, melodies]
|
| 75 |
|
| 76 |
|
|
@@ -189,5 +192,4 @@ with gr.Blocks(css=css) as demo:
|
|
| 189 |
for more details.
|
| 190 |
"""
|
| 191 |
)
|
| 192 |
-
|
| 193 |
-
demo.queue(max_size=15).launch()
|
|
|
|
| 67 |
output,
|
| 68 |
MODEL.sample_rate,
|
| 69 |
strategy="loudness",
|
| 70 |
+
loudness_headroom_db=16,
|
| 71 |
+
loudness_compressor=True,
|
| 72 |
add_suffix=False,
|
| 73 |
)
|
| 74 |
waveform_video = gr.make_waveform(file.name)
|
| 75 |
out_files.append(waveform_video)
|
| 76 |
+
|
| 77 |
return [out_files, melodies]
|
| 78 |
|
| 79 |
|
|
|
|
| 192 |
for more details.
|
| 193 |
"""
|
| 194 |
)
|
| 195 |
+
demo.queue(max_size=60).launch()
|
|
|