Spaces:
Sleeping
Sleeping
| ================================ | |
| 开源指令微调数据集(LLM) | |
| ================================ | |
| HuggingFace Hub 中有众多优秀的开源数据,本节将以 | |
| `timdettmers/openassistant-guanaco <https://huggingface.co/datasets/timdettmers/openassistant-guanaco>`__ | |
| 开源指令微调数据集为例,讲解如何开始训练。为便于介绍,本节以 | |
| `internlm2_chat_7b_qlora_oasst1_e3 <https://github.com/InternLM/xtuner/blob/main/xtuner/configs/internlm/internlm2_chat_7b/internlm2_chat_7b_qlora_oasst1_e3.py>`__ | |
| 配置文件为基础进行讲解。 | |
| 适配开源数据集 | |
| ===================== | |
| 不同的开源数据集有不同的数据「载入方式」和「字段格式」,因此我们需要针对所使用的开源数据集进行一些适配。 | |
| 载入方式 | |
| ----------- | |
| XTuner 使用上游库 ``datasets`` 的统一载入接口 ``load_dataset``\ 。 | |
| .. code:: python | |
| data_path = 'timdettmers/openassistant-guanaco' | |
| train_dataset = dict( | |
| type=process_hf_dataset, | |
| dataset=dict(type=load_dataset, path=data_path), | |
| ...) | |
| .. tip:: | |
| 一般来说,若想要使用不同的开源数据集,用户只需修改 | |
| ``dataset=dict(type=load_dataset, path=data_path)`` 中的 ``path`` | |
| 参数即可。 | |
| 若想使用 openMind 数据集,可将 ``dataset=dict(type=load_dataset, path=data_path)`` 中的 ``type`` 替换为 ``openmind.OmDataset``。 | |
| 字段格式 | |
| -------- | |
| 为适配不同的开源数据集的字段格式,XTuner 开发并设计了一套 ``map_fn`` 机制,可以把不同的开源数据集转为统一的字段格式 | |
| .. code:: python | |
| from xtuner.dataset.map_fns import oasst1_map_fn | |
| train_dataset = dict( | |
| type=process_hf_dataset, | |
| ... | |
| dataset_map_fn=oasst1_map_fn, | |
| ...) | |
| XTuner 内置了众多 map_fn | |
| (\ `这里 <https://github.com/InternLM/xtuner/tree/main/xtuner/dataset/map_fns/dataset_map_fns>`__\ ),可以满足大多数开源数据集的需要。此处我们罗列一些常用 | |
| map_fn 及其对应的原始字段和参考数据集: | |
| +------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | |
| | map_fn | Columns | Reference Datasets | | |
| +====================================================================================================================================+===================================================+=======================================================================================================================+ | |
| | `alpaca_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/alpaca_map_fn.py>`__ | ['instruction', 'input', 'output', ...] | `tatsu-lab/alpaca <https://huggingface.co/datasets/tatsu-lab/alpaca>`__ | | |
| +------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | |
| | `alpaca_zh_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/alpaca_zh_map_fn.py>`__ | ['instruction_zh', 'input_zh', 'output_zh', ...] | `silk-road/alpaca-data-gpt4-chinese <https://huggingface.co/datasets/silk-road/alpaca-data-gpt4-chinese>`__ | | |
| +------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | |
| | `oasst1_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/oasst1_map_fn.py>`__ | ['text', ...] | `timdettmers/openassistant-guanaco <https://huggingface.co/datasets/timdettmers/openassistant-guanaco>`__ | | |
| +------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | |
| | `openai_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/openai_map_fn.py>`__ | ['messages', ...] | `DavidLanz/fine_tuning_datraset_4_openai <https://huggingface.co/datasets/DavidLanz/fine_tuning_datraset_4_openai>`__ | | |
| +------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | |
| | `code_alpaca_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/code_alpaca_map_fn.py>`__ | ['prompt', 'completion', ...] | `HuggingFaceH4/CodeAlpaca_20K <https://huggingface.co/datasets/HuggingFaceH4/CodeAlpaca_20K>`__ | | |
| +------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | |
| | `medical_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/medical_map_fn.py>`__ | ['instruction', 'input', 'output', ...] | `shibing624/medical <https://huggingface.co/datasets/shibing624/medical>`__ | | |
| +------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | |
| | `tiny_codes_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/tiny_codes_map_fn.py>`__ | ['prompt', 'response', ...] | `nampdn-ai/tiny-codes <https://huggingface.co/datasets/nampdn-ai/tiny-codes>`__ | | |
| +------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | |
| | `default_map_fn <https://github.com/InternLM/xtuner/blob/main/xtuner/dataset/map_fns/dataset_map_fns/default_map_fn.py>`__ | ['input', 'output', ...] | / | | |
| +------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+ | |
| 例如,针对 ``timdettmers/openassistant-guanaco`` 数据集,XTuner 内置了 | |
| ``oasst1_map_fn``\ ,以对其进行字段格式统一。具体实现如下: | |
| .. code:: python | |
| def oasst1_map_fn(example): | |
| r"""Example before preprocessing: | |
| example['text'] = ('### Human: Can you explain xxx' | |
| '### Assistant: Sure! xxx' | |
| '### Human: I didn't understand how xxx' | |
| '### Assistant: It has to do with a process xxx.') | |
| Example after preprocessing: | |
| example['conversation'] = [ | |
| { | |
| 'input': 'Can you explain xxx', | |
| 'output': 'Sure! xxx' | |
| }, | |
| { | |
| 'input': 'I didn't understand how xxx', | |
| 'output': 'It has to do with a process xxx.' | |
| } | |
| ] | |
| """ | |
| data = [] | |
| for sentence in example['text'].strip().split('###'): | |
| sentence = sentence.strip() | |
| if sentence[:6] == 'Human:': | |
| data.append(sentence[6:].strip()) | |
| elif sentence[:10] == 'Assistant:': | |
| data.append(sentence[10:].strip()) | |
| if len(data) % 2: | |
| # The last round of conversation solely consists of input | |
| # without any output. | |
| # Discard the input part of the last round, as this part is ignored in | |
| # the loss calculation. | |
| data.pop() | |
| conversation = [] | |
| for i in range(0, len(data), 2): | |
| single_turn_conversation = {'input': data[i], 'output': data[i + 1]} | |
| conversation.append(single_turn_conversation) | |
| return {'conversation': conversation} | |
| 通过代码可以看到,\ ``oasst1_map_fn`` 对原数据中的 ``text`` | |
| 字段进行处理,进而构造了一个 ``conversation`` | |
| 字段,以此确保了后续数据处理流程的统一。 | |
| 值得注意的是,如果部分开源数据集依赖特殊的 | |
| map_fn,则需要用户自行参照以提供的 map_fn | |
| 进行自定义开发,实现字段格式的对齐。 | |
| 训练 | |
| ===== | |
| 用户可以使用 ``xtuner train`` 启动训练。假设所使用的配置文件路径为 | |
| ``./config.py``\ ,并使用 DeepSpeed ZeRO-2 优化。 | |
| 单机单卡 | |
| -------- | |
| .. code:: console | |
| $ xtuner train ./config.py --deepspeed deepspeed_zero2 | |
| 单机多卡 | |
| -------- | |
| .. code:: console | |
| $ NPROC_PER_NODE=${GPU_NUM} xtuner train ./config.py --deepspeed deepspeed_zero2 | |
| 多机多卡(以 2 \* 8 GPUs 为例) | |
| -------------------------------------- | |
| **方法 1:torchrun** | |
| .. code:: console | |
| $ # excuete on node 0 | |
| $ NPROC_PER_NODE=8 NNODES=2 PORT=$PORT ADDR=$NODE_0_ADDR NODE_RANK=0 xtuner train mixtral_8x7b_instruct_full_oasst1_e3 --deepspeed deepspeed_zero2 | |
| $ # excuete on node 1 | |
| $ NPROC_PER_NODE=8 NNODES=2 PORT=$PORT ADDR=$NODE_0_ADDR NODE_RANK=1 xtuner train mixtral_8x7b_instruct_full_oasst1_e3 --deepspeed deepspeed_zero2 | |
| .. note:: | |
| \ ``$PORT`` 表示通信端口、\ ``$NODE_0_ADDR`` 表示 node 0 的 IP 地址。 | |
| 二者并不是系统自带的环境变量,需要根据实际情况,替换为实际使用的值 | |
| **方法 2:slurm** | |
| .. code:: console | |
| $ srun -p $PARTITION --nodes=2 --gres=gpu:8 --ntasks-per-node=8 xtuner train internlm2_chat_7b_qlora_oasst1_e3 --launcher slurm --deepspeed deepspeed_zero2 | |
| 模型转换 | |
| ========= | |
| 模型训练后会自动保存成 PTH 模型(例如 ``iter_500.pth``\ ),我们需要利用 | |
| ``xtuner convert pth_to_hf`` 将其转换为 HuggingFace | |
| 模型,以便于后续使用。具体命令为: | |
| .. code:: console | |
| $ xtuner convert pth_to_hf ${CONFIG_NAME_OR_PATH} ${PTH} ${SAVE_PATH} | |
| $ # 例如:xtuner convert pth_to_hf ./config.py ./iter_500.pth ./iter_500_hf | |
| .. _模型合并可选): | |
| 模型合并(可选) | |
| ================ | |
| 如果您使用了 LoRA / QLoRA 微调,则模型转换后将得到 adapter | |
| 参数,而并不包含原 LLM | |
| 参数。如果您期望获得合并后的模型权重,那么可以利用 | |
| ``xtuner convert merge`` : | |
| .. code:: console | |
| $ xtuner convert merge ${LLM} ${ADAPTER_PATH} ${SAVE_PATH} | |
| $ # 例如:xtuner convert merge internlm/internlm2-chat-7b ./iter_500_hf ./iter_500_merged_llm | |
| 对话 | |
| ===== | |
| 用户可以利用 ``xtuner chat`` 实现与微调后的模型对话: | |
| .. code:: console | |
| $ xtuner chat ${NAME_OR_PATH_TO_LLM} --adapter ${NAME_OR_PATH_TO_ADAPTER} --prompt-template ${PROMPT_TEMPLATE} [optional arguments] | |
| .. tip:: | |
| 例如: | |
| .. code:: console | |
| $ xtuner chat internlm2/internlm2-chat-7b --adapter ./iter_500_hf --prompt-template internlm2_chat | |
| $ xtuner chat ./iter_500_merged_llm --prompt-template internlm2_chat | |