Spaces:
Running
Running
| import time | |
| import threading | |
| from toolbox import update_ui, Singleton | |
| from multiprocessing import Process, Pipe | |
| from contextlib import redirect_stdout | |
| from request_llms.queued_pipe import create_queue_pipe | |
| class ThreadLock(object): | |
| def __init__(self): | |
| self._lock = threading.Lock() | |
| def acquire(self): | |
| # print("acquiring", self) | |
| #traceback.print_tb | |
| self._lock.acquire() | |
| # print("acquired", self) | |
| def release(self): | |
| # print("released", self) | |
| #traceback.print_tb | |
| self._lock.release() | |
| def __enter__(self): | |
| self.acquire() | |
| def __exit__(self, type, value, traceback): | |
| self.release() | |
| class GetSingletonHandle(): | |
| def __init__(self): | |
| self.llm_model_already_running = {} | |
| def get_llm_model_instance(self, cls, *args, **kargs): | |
| if cls not in self.llm_model_already_running: | |
| self.llm_model_already_running[cls] = cls(*args, **kargs) | |
| return self.llm_model_already_running[cls] | |
| elif self.llm_model_already_running[cls].corrupted: | |
| self.llm_model_already_running[cls] = cls(*args, **kargs) | |
| return self.llm_model_already_running[cls] | |
| else: | |
| return self.llm_model_already_running[cls] | |
| def reset_tqdm_output(): | |
| import sys, tqdm | |
| def status_printer(self, file): | |
| fp = file | |
| if fp in (sys.stderr, sys.stdout): | |
| getattr(sys.stderr, 'flush', lambda: None)() | |
| getattr(sys.stdout, 'flush', lambda: None)() | |
| def fp_write(s): | |
| print(s) | |
| last_len = [0] | |
| def print_status(s): | |
| from tqdm.utils import disp_len | |
| len_s = disp_len(s) | |
| fp_write('\r' + s + (' ' * max(last_len[0] - len_s, 0))) | |
| last_len[0] = len_s | |
| return print_status | |
| tqdm.tqdm.status_printer = status_printer | |
| class LocalLLMHandle(Process): | |
| def __init__(self): | |
| # ⭐run in main process | |
| super().__init__(daemon=True) | |
| self.is_main_process = True # init | |
| self.corrupted = False | |
| self.load_model_info() | |
| self.parent, self.child = create_queue_pipe() | |
| self.parent_state, self.child_state = create_queue_pipe() | |
| # allow redirect_stdout | |
| self.std_tag = "[Subprocess Message] " | |
| self.running = True | |
| self._model = None | |
| self._tokenizer = None | |
| self.state = "" | |
| self.check_dependency() | |
| self.is_main_process = False # state wrap for child process | |
| self.start() | |
| self.is_main_process = True # state wrap for child process | |
| self.threadLock = ThreadLock() | |
| def get_state(self): | |
| # ⭐run in main process | |
| while self.parent_state.poll(): | |
| self.state = self.parent_state.recv() | |
| return self.state | |
| def set_state(self, new_state): | |
| # ⭐run in main process or 🏃♂️🏃♂️🏃♂️ run in child process | |
| if self.is_main_process: | |
| self.state = new_state | |
| else: | |
| self.child_state.send(new_state) | |
| def load_model_info(self): | |
| # 🏃♂️🏃♂️🏃♂️ run in child process | |
| raise NotImplementedError("Method not implemented yet") | |
| self.model_name = "" | |
| self.cmd_to_install = "" | |
| def load_model_and_tokenizer(self): | |
| """ | |
| This function should return the model and the tokenizer | |
| """ | |
| # 🏃♂️🏃♂️🏃♂️ run in child process | |
| raise NotImplementedError("Method not implemented yet") | |
| def llm_stream_generator(self, **kwargs): | |
| # 🏃♂️🏃♂️🏃♂️ run in child process | |
| raise NotImplementedError("Method not implemented yet") | |
| def try_to_import_special_deps(self, **kwargs): | |
| """ | |
| import something that will raise error if the user does not install requirement_*.txt | |
| """ | |
| # ⭐run in main process | |
| raise NotImplementedError("Method not implemented yet") | |
| def check_dependency(self): | |
| # ⭐run in main process | |
| try: | |
| self.try_to_import_special_deps() | |
| self.set_state("`依赖检测通过`") | |
| self.running = True | |
| except: | |
| self.set_state(f"缺少{self.model_name}的依赖,如果要使用{self.model_name},除了基础的pip依赖以外,您还需要运行{self.cmd_to_install}安装{self.model_name}的依赖。") | |
| self.running = False | |
| def run(self): | |
| # 🏃♂️🏃♂️🏃♂️ run in child process | |
| # 第一次运行,加载参数 | |
| self.child.flush = lambda *args: None | |
| self.child.write = lambda x: self.child.send(self.std_tag + x) | |
| reset_tqdm_output() | |
| self.set_state("`尝试加载模型`") | |
| try: | |
| with redirect_stdout(self.child): | |
| self._model, self._tokenizer = self.load_model_and_tokenizer() | |
| except: | |
| self.set_state("`加载模型失败`") | |
| self.running = False | |
| from toolbox import trimmed_format_exc | |
| self.child.send( | |
| f'[Local Message] 不能正常加载{self.model_name}的参数.' + '\n```\n' + trimmed_format_exc() + '\n```\n') | |
| self.child.send('[FinishBad]') | |
| raise RuntimeError(f"不能正常加载{self.model_name}的参数!") | |
| self.set_state("`准备就绪`") | |
| while True: | |
| # 进入任务等待状态 | |
| kwargs = self.child.recv() | |
| # 收到消息,开始请求 | |
| try: | |
| for response_full in self.llm_stream_generator(**kwargs): | |
| self.child.send(response_full) | |
| # print('debug' + response_full) | |
| self.child.send('[Finish]') | |
| # 请求处理结束,开始下一个循环 | |
| except: | |
| from toolbox import trimmed_format_exc | |
| self.child.send( | |
| f'[Local Message] 调用{self.model_name}失败.' + '\n```\n' + trimmed_format_exc() + '\n```\n') | |
| self.child.send('[Finish]') | |
| def clear_pending_messages(self): | |
| # ⭐run in main process | |
| while True: | |
| if self.parent.poll(): | |
| self.parent.recv() | |
| continue | |
| for _ in range(5): | |
| time.sleep(0.5) | |
| if self.parent.poll(): | |
| r = self.parent.recv() | |
| continue | |
| break | |
| return | |
| def stream_chat(self, **kwargs): | |
| # ⭐run in main process | |
| if self.get_state() == "`准备就绪`": | |
| yield "`正在等待线程锁,排队中请稍候 ...`" | |
| with self.threadLock: | |
| if self.parent.poll(): | |
| yield "`排队中请稍候 ...`" | |
| self.clear_pending_messages() | |
| self.parent.send(kwargs) | |
| std_out = "" | |
| std_out_clip_len = 4096 | |
| while True: | |
| res = self.parent.recv() | |
| # pipe_watch_dog.feed() | |
| if res.startswith(self.std_tag): | |
| new_output = res[len(self.std_tag):] | |
| std_out = std_out[:std_out_clip_len] | |
| print(new_output, end='') | |
| std_out = new_output + std_out | |
| yield self.std_tag + '\n```\n' + std_out + '\n```\n' | |
| elif res == '[Finish]': | |
| break | |
| elif res == '[FinishBad]': | |
| self.running = False | |
| self.corrupted = True | |
| break | |
| else: | |
| std_out = "" | |
| yield res | |
| def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='classic'): | |
| load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……" | |
| def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False): | |
| """ | |
| refer to request_llms/bridge_all.py | |
| """ | |
| _llm_handle = GetSingletonHandle().get_llm_model_instance(LLMSingletonClass) | |
| if len(observe_window) >= 1: | |
| observe_window[0] = load_message + "\n\n" + _llm_handle.get_state() | |
| if not _llm_handle.running: | |
| raise RuntimeError(_llm_handle.get_state()) | |
| if history_format == 'classic': | |
| # 没有 sys_prompt 接口,因此把prompt加入 history | |
| history_feedin = [] | |
| history_feedin.append([sys_prompt, "Certainly!"]) | |
| for i in range(len(history)//2): | |
| history_feedin.append([history[2*i], history[2*i+1]]) | |
| elif history_format == 'chatglm3': | |
| # 有 sys_prompt 接口 | |
| conversation_cnt = len(history) // 2 | |
| history_feedin = [{"role": "system", "content": sys_prompt}] | |
| if conversation_cnt: | |
| for index in range(0, 2*conversation_cnt, 2): | |
| what_i_have_asked = {} | |
| what_i_have_asked["role"] = "user" | |
| what_i_have_asked["content"] = history[index] | |
| what_gpt_answer = {} | |
| what_gpt_answer["role"] = "assistant" | |
| what_gpt_answer["content"] = history[index+1] | |
| if what_i_have_asked["content"] != "": | |
| if what_gpt_answer["content"] == "": | |
| continue | |
| history_feedin.append(what_i_have_asked) | |
| history_feedin.append(what_gpt_answer) | |
| else: | |
| history_feedin[-1]['content'] = what_gpt_answer['content'] | |
| watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可 | |
| response = "" | |
| for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): | |
| if len(observe_window) >= 1: | |
| observe_window[0] = response | |
| if len(observe_window) >= 2: | |
| if (time.time()-observe_window[1]) > watch_dog_patience: | |
| raise RuntimeError("程序终止。") | |
| return response | |
| def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None): | |
| """ | |
| refer to request_llms/bridge_all.py | |
| """ | |
| chatbot.append((inputs, "")) | |
| _llm_handle = GetSingletonHandle().get_llm_model_instance(LLMSingletonClass) | |
| chatbot[-1] = (inputs, load_message + "\n\n" + _llm_handle.get_state()) | |
| yield from update_ui(chatbot=chatbot, history=[]) | |
| if not _llm_handle.running: | |
| raise RuntimeError(_llm_handle.get_state()) | |
| if additional_fn is not None: | |
| from core_functional import handle_core_functionality | |
| inputs, history = handle_core_functionality( | |
| additional_fn, inputs, history, chatbot) | |
| # 处理历史信息 | |
| if history_format == 'classic': | |
| # 没有 sys_prompt 接口,因此把prompt加入 history | |
| history_feedin = [] | |
| history_feedin.append([system_prompt, "Certainly!"]) | |
| for i in range(len(history)//2): | |
| history_feedin.append([history[2*i], history[2*i+1]]) | |
| elif history_format == 'chatglm3': | |
| # 有 sys_prompt 接口 | |
| conversation_cnt = len(history) // 2 | |
| history_feedin = [{"role": "system", "content": system_prompt}] | |
| if conversation_cnt: | |
| for index in range(0, 2*conversation_cnt, 2): | |
| what_i_have_asked = {} | |
| what_i_have_asked["role"] = "user" | |
| what_i_have_asked["content"] = history[index] | |
| what_gpt_answer = {} | |
| what_gpt_answer["role"] = "assistant" | |
| what_gpt_answer["content"] = history[index+1] | |
| if what_i_have_asked["content"] != "": | |
| if what_gpt_answer["content"] == "": | |
| continue | |
| history_feedin.append(what_i_have_asked) | |
| history_feedin.append(what_gpt_answer) | |
| else: | |
| history_feedin[-1]['content'] = what_gpt_answer['content'] | |
| # 开始接收回复 | |
| response = f"[Local Message] 等待{model_name}响应中 ..." | |
| for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): | |
| chatbot[-1] = (inputs, response) | |
| yield from update_ui(chatbot=chatbot, history=history) | |
| # 总结输出 | |
| if response == f"[Local Message] 等待{model_name}响应中 ...": | |
| response = f"[Local Message] {model_name}响应异常 ..." | |
| history.extend([inputs, response]) | |
| yield from update_ui(chatbot=chatbot, history=history) | |
| return predict_no_ui_long_connection, predict | |