Spaces:
Sleeping
Sleeping
Quentin Fisch
commited on
Commit
·
efb5688
1
Parent(s):
5c4f525
feat(demo): add demo files
Browse files- app.py +79 -0
- confluence_rag.py +185 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Gradio UI for Mistral 7B with RAG
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
from typing import List
|
| 7 |
+
|
| 8 |
+
import gradio as gr
|
| 9 |
+
from langchain_core.runnables.base import RunnableSequence
|
| 10 |
+
import numpy as np
|
| 11 |
+
from confluence_rag import generate_rag_chain, load_pdf, store_vector, load_multiple_pdf
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def initialize_chain(file: gr.File) -> RunnableSequence:
|
| 15 |
+
"""
|
| 16 |
+
Initializes the chain with the given file.
|
| 17 |
+
|
| 18 |
+
If no file is provided, the llm is used without RAG.
|
| 19 |
+
|
| 20 |
+
Args:
|
| 21 |
+
file (gr.File): file to initialize the chain with
|
| 22 |
+
|
| 23 |
+
Returns:
|
| 24 |
+
RunnableSequence: the chain
|
| 25 |
+
"""
|
| 26 |
+
if file is None:
|
| 27 |
+
return generate_rag_chain()
|
| 28 |
+
|
| 29 |
+
if len(file) == 1:
|
| 30 |
+
pdf = load_pdf(file[0].name)
|
| 31 |
+
else:
|
| 32 |
+
pdf = load_multiple_pdf([f.name for f in file])
|
| 33 |
+
retriever = store_vector(pdf)
|
| 34 |
+
|
| 35 |
+
return generate_rag_chain(retriever)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def invoke_chain(message: str, history: List[str], file: gr.File = None) -> str:
|
| 39 |
+
"""
|
| 40 |
+
Invokes the chain with the given message and updates the chain if a new file is provided.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
message (str): message to invoke the chain with
|
| 44 |
+
history (List[str]): history of messages
|
| 45 |
+
file (gr.File, optional): file to update the chain with. Defaults to None.
|
| 46 |
+
|
| 47 |
+
Returns:
|
| 48 |
+
str: the response of the chain
|
| 49 |
+
"""
|
| 50 |
+
# Check if file is provided and exists
|
| 51 |
+
if file is not None and not np.all([os.path.exists(f.name) for f in file]) or len(file) == 0:
|
| 52 |
+
return "Error: File not found."
|
| 53 |
+
|
| 54 |
+
if file is not None and not np.all([f.name.endswith(".pdf") for f in file]):
|
| 55 |
+
return "Error: File is not a pdf."
|
| 56 |
+
|
| 57 |
+
chain = initialize_chain(file)
|
| 58 |
+
return chain.invoke(message)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def create_demo() -> gr.Interface:
|
| 62 |
+
"""
|
| 63 |
+
Creates and returns a Gradio Chat Interface.
|
| 64 |
+
|
| 65 |
+
Returns:
|
| 66 |
+
gr.Interface: the Gradio Chat Interface
|
| 67 |
+
"""
|
| 68 |
+
return gr.ChatInterface(
|
| 69 |
+
invoke_chain,
|
| 70 |
+
additional_inputs=[gr.File(label="File", file_count='multiple')],
|
| 71 |
+
title="Mistral 7B with RAG",
|
| 72 |
+
description="Ask questions to Mistral about your pdf document.",
|
| 73 |
+
theme="soft",
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
if __name__ == "__main__":
|
| 78 |
+
demo = create_demo()
|
| 79 |
+
demo.launch()
|
confluence_rag.py
ADDED
|
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import List
|
| 3 |
+
|
| 4 |
+
from langchain_community.document_loaders import UnstructuredPDFLoader
|
| 5 |
+
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
| 6 |
+
from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
|
| 7 |
+
from langchain.prompts import ChatPromptTemplate
|
| 8 |
+
from langchain.schema.output_parser import StrOutputParser
|
| 9 |
+
from langchain.schema.runnable import RunnablePassthrough
|
| 10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 11 |
+
from langchain_community.vectorstores.chroma import Chroma
|
| 12 |
+
from langchain_core.runnables.base import RunnableSequence
|
| 13 |
+
from langchain_core.vectorstores import VectorStoreRetriever
|
| 14 |
+
|
| 15 |
+
from dotenv import load_dotenv
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
load_dotenv()
|
| 19 |
+
HF_API_KEY = os.environ["HF_API_KEY"]
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class MistralOutputParser(StrOutputParser):
|
| 23 |
+
"""OutputParser that parser llm result from Mistral API"""
|
| 24 |
+
|
| 25 |
+
def parse(self, text: str) -> str:
|
| 26 |
+
"""
|
| 27 |
+
Returns the input text with no changes.
|
| 28 |
+
|
| 29 |
+
Args:
|
| 30 |
+
text (str): text to parse
|
| 31 |
+
|
| 32 |
+
Returns:
|
| 33 |
+
str: parsed text
|
| 34 |
+
"""
|
| 35 |
+
return text.split("[/INST]")[-1].strip()
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def load_pdf(
|
| 39 |
+
document_path: str,
|
| 40 |
+
mode: str = "single",
|
| 41 |
+
strategy: str = "fast",
|
| 42 |
+
chunk_size: int = 500,
|
| 43 |
+
chunk_overlap: int = 0,
|
| 44 |
+
) -> List[str]:
|
| 45 |
+
"""
|
| 46 |
+
Load a pdf document and split it into chunks of text.
|
| 47 |
+
|
| 48 |
+
Args:
|
| 49 |
+
document_path (Path): path to the pdf document
|
| 50 |
+
mode (str, optional): mode of the loader. Defaults to "single".
|
| 51 |
+
strategy (str, optional): strategy of the loader. Defaults to "fast".
|
| 52 |
+
chunk_size (int, optional): size of the chunks. Defaults to 500.
|
| 53 |
+
chunk_overlap (int, optional): overlap of the chunks. Defaults to 0.
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
List[str]: list of chunks of text
|
| 57 |
+
"""
|
| 58 |
+
|
| 59 |
+
# Load the document
|
| 60 |
+
loader = UnstructuredPDFLoader(
|
| 61 |
+
document_path,
|
| 62 |
+
mode=mode,
|
| 63 |
+
strategy=strategy,
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
docs = loader.load()
|
| 67 |
+
|
| 68 |
+
# Split the document into chunks of text
|
| 69 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 70 |
+
chunk_size=chunk_size, chunk_overlap=chunk_overlap
|
| 71 |
+
)
|
| 72 |
+
all_splits = text_splitter.split_documents(docs)
|
| 73 |
+
|
| 74 |
+
return all_splits
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def store_vector(all_splits: List[str]) -> VectorStoreRetriever:
|
| 78 |
+
"""
|
| 79 |
+
Store vector of each chunk of text.
|
| 80 |
+
|
| 81 |
+
Args:
|
| 82 |
+
all_splits (List[str]): list of chunks of text
|
| 83 |
+
|
| 84 |
+
Returns:
|
| 85 |
+
VectorStoreRetriever: retriever that can be used to retrieve the vector of a chunk of text
|
| 86 |
+
"""
|
| 87 |
+
|
| 88 |
+
# Use the HuggingFace distilbert-base-uncased model to embed the text
|
| 89 |
+
embeddings_model_url = (
|
| 90 |
+
"https://api-inference.huggingface.co/models/distilbert-base-uncased"
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
embeddings = HuggingFaceInferenceAPIEmbeddings(
|
| 94 |
+
endpoint_url=embeddings_model_url,
|
| 95 |
+
api_key=HF_API_KEY,
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
# Store the embeddings of each chunk of text into ChromaDB
|
| 99 |
+
vector_store = Chroma.from_documents(all_splits, embeddings)
|
| 100 |
+
retriever = vector_store.as_retriever()
|
| 101 |
+
|
| 102 |
+
return retriever
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def generate_mistral_rag_prompt() -> ChatPromptTemplate:
|
| 106 |
+
"""
|
| 107 |
+
Generate a prompt for Mistral API wiht RAG.
|
| 108 |
+
|
| 109 |
+
Returns:
|
| 110 |
+
ChatPromptTemplate: prompt for Mistral API
|
| 111 |
+
"""
|
| 112 |
+
template = "<s>[INST] {context} {prompt} [/INST]"
|
| 113 |
+
prompt_template = ChatPromptTemplate.from_template(template)
|
| 114 |
+
return prompt_template
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def generate_mistral_simple_prompt() -> ChatPromptTemplate:
|
| 118 |
+
"""
|
| 119 |
+
Generate a simple prompt for Mistral without RAG.
|
| 120 |
+
|
| 121 |
+
Returns:
|
| 122 |
+
ChatPromptTemplate: prompt for Mistral API
|
| 123 |
+
"""
|
| 124 |
+
template = "[INST] {prompt} [/INST]"
|
| 125 |
+
prompt_template = ChatPromptTemplate.from_template(template)
|
| 126 |
+
return prompt_template
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def generate_rag_chain(retriever: VectorStoreRetriever = None) -> RunnableSequence:
|
| 130 |
+
"""
|
| 131 |
+
Generate a RAG chain with Mistral API and ChromaDB.
|
| 132 |
+
|
| 133 |
+
Args:
|
| 134 |
+
Retriever (VectorStoreRetriever): retriever that can be used to retrieve the vector of a chunk of text
|
| 135 |
+
|
| 136 |
+
Returns:
|
| 137 |
+
RunnableSequence: RAG chain
|
| 138 |
+
"""
|
| 139 |
+
# Use the Mistral Free prototype API
|
| 140 |
+
mistral_url = (
|
| 141 |
+
"https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
model_endpoint = HuggingFaceEndpoint(
|
| 145 |
+
endpoint_url=mistral_url,
|
| 146 |
+
huggingfacehub_api_token=HF_API_KEY,
|
| 147 |
+
task="text2text-generation",
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
# Use a custom output parser
|
| 151 |
+
output_parser = MistralOutputParser()
|
| 152 |
+
|
| 153 |
+
# If no retriever is provided, use a simple prompt
|
| 154 |
+
if retriever is None:
|
| 155 |
+
entry = {"prompt": RunnablePassthrough()}
|
| 156 |
+
return entry | generate_mistral_simple_prompt() | model_endpoint | output_parser
|
| 157 |
+
|
| 158 |
+
# If a retriever is provided, use a RAG prompt
|
| 159 |
+
retrieval = {"context": retriever, "prompt": RunnablePassthrough()}
|
| 160 |
+
|
| 161 |
+
return retrieval | generate_mistral_rag_prompt() | model_endpoint | output_parser
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def load_multiple_pdf(document_paths: List[str]) -> List[str]:
|
| 165 |
+
"""
|
| 166 |
+
Load multiple pdf documents and split them into chunks of text.
|
| 167 |
+
|
| 168 |
+
Args:
|
| 169 |
+
document_paths (List[str]): list of paths to the pdf documents
|
| 170 |
+
|
| 171 |
+
Returns:
|
| 172 |
+
List[str]: list of chunks of text
|
| 173 |
+
"""
|
| 174 |
+
docs = []
|
| 175 |
+
for document_path in document_paths:
|
| 176 |
+
loader = UnstructuredPDFLoader(
|
| 177 |
+
document_path,
|
| 178 |
+
mode="single",
|
| 179 |
+
strategy="fast",
|
| 180 |
+
)
|
| 181 |
+
docs.extend(loader.load())
|
| 182 |
+
|
| 183 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=25)
|
| 184 |
+
all_splits = text_splitter.split_documents(docs)
|
| 185 |
+
return all_splits
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
langchain==0.1.9
|
| 2 |
+
chromadb==0.4.24
|
| 3 |
+
unstructured[pdf]
|
| 4 |
+
gradio
|