Maharshi Gor
commited on
Commit
·
54e2d5b
1
Parent(s):
3283369
Update leaderboard download, refactored hf_datasets_utils
Browse files- app.py +3 -16
- run_local.sh +17 -0
- src/components/leaderboard.py +15 -11
- src/envs.py +1 -1
- src/hf_datasets_utils.py +161 -0
- src/utils.py +2 -0
app.py
CHANGED
|
@@ -29,8 +29,9 @@ from envs import (
|
|
| 29 |
QUEUE_REPO,
|
| 30 |
REPO_ID,
|
| 31 |
RESULTS_REPO,
|
| 32 |
-
|
| 33 |
)
|
|
|
|
| 34 |
from shared.workflows import factory
|
| 35 |
from shared.workflows.configs import AVAILABLE_MODELS
|
| 36 |
|
|
@@ -39,20 +40,6 @@ def restart_space():
|
|
| 39 |
API.restart_space(repo_id=REPO_ID)
|
| 40 |
|
| 41 |
|
| 42 |
-
def download_dataset_snapshot(repo_id, local_dir):
|
| 43 |
-
try:
|
| 44 |
-
logger.info(f"Downloading dataset snapshot from {repo_id} to {local_dir}")
|
| 45 |
-
snapshot_download(
|
| 46 |
-
repo_id=repo_id,
|
| 47 |
-
local_dir=local_dir,
|
| 48 |
-
repo_type="dataset",
|
| 49 |
-
tqdm_class=None,
|
| 50 |
-
)
|
| 51 |
-
except Exception as e:
|
| 52 |
-
logger.error(f"Error downloading dataset snapshot from {repo_id} to {local_dir}: {e}. Restarting space.")
|
| 53 |
-
restart_space()
|
| 54 |
-
|
| 55 |
-
|
| 56 |
download_dataset_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
|
| 57 |
|
| 58 |
|
|
@@ -97,7 +84,7 @@ def presave_pipeline_state(
|
|
| 97 |
|
| 98 |
if __name__ == "__main__":
|
| 99 |
scheduler = BackgroundScheduler()
|
| 100 |
-
scheduler.add_job(restart_space, "interval", seconds=
|
| 101 |
scheduler.start()
|
| 102 |
|
| 103 |
css = css_pipeline + css_tossup + css_bonus + leaderboard_css
|
|
|
|
| 29 |
QUEUE_REPO,
|
| 30 |
REPO_ID,
|
| 31 |
RESULTS_REPO,
|
| 32 |
+
SERVER_RESTART_INTERVAL,
|
| 33 |
)
|
| 34 |
+
from hf_datasets_utils import download_dataset_snapshot
|
| 35 |
from shared.workflows import factory
|
| 36 |
from shared.workflows.configs import AVAILABLE_MODELS
|
| 37 |
|
|
|
|
| 40 |
API.restart_space(repo_id=REPO_ID)
|
| 41 |
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
download_dataset_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
|
| 44 |
|
| 45 |
|
|
|
|
| 84 |
|
| 85 |
if __name__ == "__main__":
|
| 86 |
scheduler = BackgroundScheduler()
|
| 87 |
+
scheduler.add_job(restart_space, "interval", seconds=SERVER_RESTART_INTERVAL)
|
| 88 |
scheduler.start()
|
| 89 |
|
| 90 |
css = css_pipeline + css_tossup + css_bonus + leaderboard_css
|
run_local.sh
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
# Source the environment variables
|
| 4 |
+
source .env
|
| 5 |
+
|
| 6 |
+
# Remove directories if they exist
|
| 7 |
+
if [ -d "eval-queue" ]; then
|
| 8 |
+
echo "Removing eval-queue"
|
| 9 |
+
rm -r eval-queue
|
| 10 |
+
fi
|
| 11 |
+
|
| 12 |
+
if [ -d "eval-results" ]; then
|
| 13 |
+
echo "Removing eval-results"
|
| 14 |
+
rm -r eval-results
|
| 15 |
+
fi
|
| 16 |
+
|
| 17 |
+
python app.py
|
src/components/leaderboard.py
CHANGED
|
@@ -7,11 +7,15 @@ from gradio_leaderboard import Leaderboard
|
|
| 7 |
from loguru import logger
|
| 8 |
|
| 9 |
import populate
|
| 10 |
-
from envs import EVAL_RESULTS_PATH, LEADERBOARD_REFRESH_INTERVAL
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
def fetch_tossup_leaderboard(style: bool = True):
|
| 14 |
-
# download_dataset_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
|
| 15 |
df = populate.get_tossups_leaderboard_df(EVAL_RESULTS_PATH, "tiny_eval")
|
| 16 |
|
| 17 |
def colour_pos_neg(v):
|
|
@@ -35,7 +39,6 @@ def fetch_tossup_leaderboard(style: bool = True):
|
|
| 35 |
|
| 36 |
|
| 37 |
def fetch_bonus_leaderboard(style: bool = True):
|
| 38 |
-
# download_dataset_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
|
| 39 |
df = populate.get_bonuses_leaderboard_df(EVAL_RESULTS_PATH, "tiny_eval")
|
| 40 |
|
| 41 |
# Apply formatting and styling
|
|
@@ -49,6 +52,13 @@ def fetch_bonus_leaderboard(style: bool = True):
|
|
| 49 |
return styled_df if style else df
|
| 50 |
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
def create_leaderboard_interface(app):
|
| 53 |
leaderboard_timer = gr.Timer(LEADERBOARD_REFRESH_INTERVAL)
|
| 54 |
refresh_btn = gr.Button("🔄 Refresh")
|
|
@@ -77,13 +87,7 @@ def create_leaderboard_interface(app):
|
|
| 77 |
|
| 78 |
gr.on(
|
| 79 |
triggers=[leaderboard_timer.tick, refresh_btn.click, app.load],
|
| 80 |
-
fn=
|
| 81 |
-
inputs=[],
|
| 82 |
-
outputs=tossup_leaderboard,
|
| 83 |
-
)
|
| 84 |
-
gr.on(
|
| 85 |
-
triggers=[leaderboard_timer.tick, refresh_btn.click, app.load],
|
| 86 |
-
fn=fetch_bonus_leaderboard,
|
| 87 |
inputs=[],
|
| 88 |
-
outputs=bonus_leaderboard,
|
| 89 |
)
|
|
|
|
| 7 |
from loguru import logger
|
| 8 |
|
| 9 |
import populate
|
| 10 |
+
from envs import EVAL_RESULTS_PATH, LEADERBOARD_REFRESH_INTERVAL, RESULTS_REPO
|
| 11 |
+
from hf_datasets_utils import download_dataset_snapshot
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def download_leaderboard_data():
|
| 15 |
+
download_dataset_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
|
| 16 |
|
| 17 |
|
| 18 |
def fetch_tossup_leaderboard(style: bool = True):
|
|
|
|
| 19 |
df = populate.get_tossups_leaderboard_df(EVAL_RESULTS_PATH, "tiny_eval")
|
| 20 |
|
| 21 |
def colour_pos_neg(v):
|
|
|
|
| 39 |
|
| 40 |
|
| 41 |
def fetch_bonus_leaderboard(style: bool = True):
|
|
|
|
| 42 |
df = populate.get_bonuses_leaderboard_df(EVAL_RESULTS_PATH, "tiny_eval")
|
| 43 |
|
| 44 |
# Apply formatting and styling
|
|
|
|
| 52 |
return styled_df if style else df
|
| 53 |
|
| 54 |
|
| 55 |
+
def refresh_leaderboard(style: bool = True):
|
| 56 |
+
download_leaderboard_data()
|
| 57 |
+
tossup_df = fetch_tossup_leaderboard(style)
|
| 58 |
+
bonus_df = fetch_bonus_leaderboard(style)
|
| 59 |
+
return tossup_df, bonus_df
|
| 60 |
+
|
| 61 |
+
|
| 62 |
def create_leaderboard_interface(app):
|
| 63 |
leaderboard_timer = gr.Timer(LEADERBOARD_REFRESH_INTERVAL)
|
| 64 |
refresh_btn = gr.Button("🔄 Refresh")
|
|
|
|
| 87 |
|
| 88 |
gr.on(
|
| 89 |
triggers=[leaderboard_timer.tick, refresh_btn.click, app.load],
|
| 90 |
+
fn=refresh_leaderboard,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
inputs=[],
|
| 92 |
+
outputs=[tossup_leaderboard, bonus_leaderboard],
|
| 93 |
)
|
src/envs.py
CHANGED
|
@@ -45,7 +45,7 @@ EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
|
| 45 |
|
| 46 |
|
| 47 |
LLM_CACHE_REFRESH_INTERVAL = 600 # seconds (30 minutes)
|
| 48 |
-
|
| 49 |
LEADERBOARD_REFRESH_INTERVAL = 600 # seconds (10 minutes)
|
| 50 |
|
| 51 |
API = HfApi(token=TOKEN)
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
LLM_CACHE_REFRESH_INTERVAL = 600 # seconds (30 minutes)
|
| 48 |
+
SERVER_RESTART_INTERVAL = 2 * 24 * 60 * 60 # seconds (2 days)
|
| 49 |
LEADERBOARD_REFRESH_INTERVAL = 600 # seconds (10 minutes)
|
| 50 |
|
| 51 |
API = HfApi(token=TOKEN)
|
src/hf_datasets_utils.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import HfApi, snapshot_download
|
| 2 |
+
from loguru import logger
|
| 3 |
+
|
| 4 |
+
api = HfApi()
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def download_dataset_snapshot(repo_id, local_dir):
|
| 8 |
+
try:
|
| 9 |
+
logger.info(f"Downloading dataset snapshot from {repo_id} to {local_dir}")
|
| 10 |
+
snapshot_download(
|
| 11 |
+
repo_id=repo_id,
|
| 12 |
+
local_dir=local_dir,
|
| 13 |
+
repo_type="dataset",
|
| 14 |
+
tqdm_class=None,
|
| 15 |
+
)
|
| 16 |
+
except Exception as e:
|
| 17 |
+
logger.error(f"Error downloading dataset snapshot from {repo_id} to {local_dir}: {e}. Restarting space.")
|
| 18 |
+
api.restart_space(repo_id=repo_id)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def remove_files_from_dataset_repo(repo_id: str, path_patterns: list[str], commit_message: str = "Remove files"):
|
| 22 |
+
"""
|
| 23 |
+
Remove files or directories matching specified patterns from a Hugging Face dataset repository.
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
repo_id: The ID of the dataset repository (e.g., "username/dataset-name")
|
| 27 |
+
path_patterns: List of file or directory path patterns to remove
|
| 28 |
+
commit_message: Message for the commit that removes the files
|
| 29 |
+
"""
|
| 30 |
+
import fnmatch
|
| 31 |
+
import os
|
| 32 |
+
|
| 33 |
+
# Get all files in the repository
|
| 34 |
+
repo_files = api.list_repo_files(repo_id=repo_id, repo_type="dataset")
|
| 35 |
+
|
| 36 |
+
# Find files matching the patterns
|
| 37 |
+
files_to_remove = []
|
| 38 |
+
for pattern in path_patterns:
|
| 39 |
+
matching_files = fnmatch.filter(repo_files, pattern)
|
| 40 |
+
files_to_remove.extend(matching_files)
|
| 41 |
+
|
| 42 |
+
# Delete each matching file
|
| 43 |
+
for path in files_to_remove:
|
| 44 |
+
try:
|
| 45 |
+
api.delete_file(
|
| 46 |
+
path_in_repo=path, repo_id=repo_id, repo_type="dataset", commit_message=f"{commit_message}: {path}"
|
| 47 |
+
)
|
| 48 |
+
print(f"Successfully removed {path} from {repo_id}")
|
| 49 |
+
except Exception as e:
|
| 50 |
+
print(f"Error removing {path}: {e}")
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def update_dataset_info_readme(
|
| 54 |
+
repo_id: str,
|
| 55 |
+
dataset_info: dict,
|
| 56 |
+
license_id: str = None,
|
| 57 |
+
commit_message: str = "Update dataset_info in README.md",
|
| 58 |
+
):
|
| 59 |
+
"""
|
| 60 |
+
Update the dataset_info section in the README.md file of a Hugging Face dataset repository.
|
| 61 |
+
|
| 62 |
+
Args:
|
| 63 |
+
repo_id: The ID of the dataset repository (e.g., "username/dataset-name")
|
| 64 |
+
dataset_info: Dictionary containing dataset information to include in the README
|
| 65 |
+
license_id: Optional license identifier (e.g., "mit", "cc-by-4.0")
|
| 66 |
+
commit_message: Message for the commit
|
| 67 |
+
|
| 68 |
+
Example dataset_info structure:
|
| 69 |
+
{
|
| 70 |
+
"features": [
|
| 71 |
+
{"name": "text", "dtype": "string"},
|
| 72 |
+
{"name": "label", "dtype": "int64"}
|
| 73 |
+
],
|
| 74 |
+
"splits": [
|
| 75 |
+
{"name": "train", "num_examples": 10000, "num_bytes": 1000000},
|
| 76 |
+
{"name": "test", "num_examples": 1000, "num_bytes": 100000}
|
| 77 |
+
],
|
| 78 |
+
"download_size": 1200000,
|
| 79 |
+
"dataset_size": 1100000,
|
| 80 |
+
"configs": [
|
| 81 |
+
{
|
| 82 |
+
"config_name": "default",
|
| 83 |
+
"data_files": [
|
| 84 |
+
{"split": "train", "path": "data/train.csv"},
|
| 85 |
+
{"split": "test", "path": "data/test.csv"}
|
| 86 |
+
]
|
| 87 |
+
}
|
| 88 |
+
]
|
| 89 |
+
}
|
| 90 |
+
"""
|
| 91 |
+
import re
|
| 92 |
+
|
| 93 |
+
import yaml
|
| 94 |
+
from huggingface_hub import HfApi
|
| 95 |
+
|
| 96 |
+
api = HfApi()
|
| 97 |
+
|
| 98 |
+
# Check if README.md exists
|
| 99 |
+
try:
|
| 100 |
+
readme_content = api.hf_hub_download(repo_id=repo_id, repo_type="dataset", filename="README.md", token=None)
|
| 101 |
+
with open(readme_content, "r", encoding="utf-8") as f:
|
| 102 |
+
content = f.read()
|
| 103 |
+
except Exception:
|
| 104 |
+
# Create a new README.md if it doesn't exist
|
| 105 |
+
content = ""
|
| 106 |
+
|
| 107 |
+
# Parse existing YAML front matter if it exists
|
| 108 |
+
yaml_block = None
|
| 109 |
+
yaml_match = re.search(r"---\s*\n(.*?)\n\s*---", content, re.DOTALL)
|
| 110 |
+
|
| 111 |
+
if yaml_match:
|
| 112 |
+
yaml_text = yaml_match.group(1)
|
| 113 |
+
try:
|
| 114 |
+
yaml_block = yaml.safe_load(yaml_text)
|
| 115 |
+
except Exception as e:
|
| 116 |
+
print(f"Error parsing existing YAML front matter: {e}")
|
| 117 |
+
yaml_block = {}
|
| 118 |
+
else:
|
| 119 |
+
yaml_block = {}
|
| 120 |
+
|
| 121 |
+
# Update or add dataset_info and license
|
| 122 |
+
if dataset_info:
|
| 123 |
+
yaml_block["dataset_info"] = dataset_info
|
| 124 |
+
|
| 125 |
+
if license_id:
|
| 126 |
+
yaml_block["license"] = license_id
|
| 127 |
+
|
| 128 |
+
# Generate new YAML front matter
|
| 129 |
+
new_yaml = yaml.dump(yaml_block, sort_keys=False, default_flow_style=False)
|
| 130 |
+
new_yaml_block = f"---\n{new_yaml}---\n"
|
| 131 |
+
|
| 132 |
+
# Replace existing YAML front matter or add it at the beginning
|
| 133 |
+
if yaml_match:
|
| 134 |
+
new_content = content[: yaml_match.start()] + new_yaml_block + content[yaml_match.end() :]
|
| 135 |
+
else:
|
| 136 |
+
new_content = new_yaml_block + content
|
| 137 |
+
|
| 138 |
+
# Create a temporary file with the new content
|
| 139 |
+
import tempfile
|
| 140 |
+
|
| 141 |
+
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".md") as temp_file:
|
| 142 |
+
temp_file.write(new_content)
|
| 143 |
+
temp_path = temp_file.name
|
| 144 |
+
|
| 145 |
+
# Upload the updated README.md
|
| 146 |
+
try:
|
| 147 |
+
api.upload_file(
|
| 148 |
+
path_or_fileobj=temp_path,
|
| 149 |
+
path_in_repo="README.md",
|
| 150 |
+
repo_id=repo_id,
|
| 151 |
+
repo_type="dataset",
|
| 152 |
+
commit_message=commit_message,
|
| 153 |
+
)
|
| 154 |
+
print(f"Successfully updated README.md in {repo_id}")
|
| 155 |
+
except Exception as e:
|
| 156 |
+
print(f"Error updating README.md: {e}")
|
| 157 |
+
|
| 158 |
+
# Clean up temporary file
|
| 159 |
+
import os
|
| 160 |
+
|
| 161 |
+
os.unlink(temp_path)
|
src/utils.py
CHANGED
|
@@ -1,5 +1,7 @@
|
|
| 1 |
# Description: Utility functions for the model_step component.
|
| 2 |
|
|
|
|
|
|
|
| 3 |
from app_configs import AVAILABLE_MODELS, UNSELECTED_MODEL_NAME
|
| 4 |
|
| 5 |
|
|
|
|
| 1 |
# Description: Utility functions for the model_step component.
|
| 2 |
|
| 3 |
+
from loguru import logger
|
| 4 |
+
|
| 5 |
from app_configs import AVAILABLE_MODELS, UNSELECTED_MODEL_NAME
|
| 6 |
|
| 7 |
|