Spaces:
Runtime error
Runtime error
| # login as a privileged user. | |
| import os | |
| HF_TOKEN = os.environ.get("HF_TOKEN") | |
| from huggingface_hub import login | |
| login(token=HF_TOKEN) | |
| from threading import Thread | |
| from typing import Iterator | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| from pyreft import ReftModel, get_intervention_locations | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| DESCRIPTION = """\ | |
| # ReFT-Chat (Llama-2 7B with 1K examples) | |
| ### What's ReFT-Chat? | |
| ReFT-Chat is a chatbot built with ReFT and Llama-2 7B. It is trained with 1K training examples from the unpaired [Ultrafeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback). It is not good at multi-turn conversations. You can train your own ReFT agent and share it on HuggingFace by following this [tutorial](https://github.com/stanfordnlp/pyreft/tree/main/examples/gradio/train_and_share.ipynb)! | |
| ### Usage Terms | |
| This should only be used for research purposes. We did not conduct additional safety training with ReFT. We evaluate this model using [Alpaca-eval](https://github.com/tatsu-lab/alpaca_eval). Performance results can be found in [our ReFT paper](https://arxiv.org/abs/2404.03592). Our model inherits all the underlying risks associated with Llama. See terms outlined below. | |
| """ | |
| LICENSE = """ | |
| <p/> | |
| --- | |
| As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, | |
| this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md). | |
| """ | |
| if not torch.cuda.is_available(): | |
| DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
| if torch.cuda.is_available(): | |
| model_id = "meta-llama/Llama-2-7b-hf" | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, device_map="cuda", torch_dtype=torch.bfloat16 | |
| ) | |
| reft_model = ReftModel.load("pyvene/reft_chat7b_1k", model, from_huggingface_hub=True) | |
| reft_model.set_device("cuda") | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| tokenizer.use_default_system_prompt = True | |
| prompt_no_input_template = """Below is an instruction that \ | |
| describes a task. Write a response that appropriately \ | |
| completes the request. | |
| ### Instruction: | |
| %s | |
| ### Response: | |
| """ | |
| def generate( | |
| message: str, | |
| chat_history: list[tuple[str, str]], | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2, | |
| ) -> Iterator[str]: | |
| # tokenize and prepare the input | |
| conversation = [] | |
| for user, assistant in chat_history: | |
| conversation += [f"user: {user} assistant : {assistant}"] | |
| conversation += [message] | |
| conversation = "\n".join(conversation) | |
| prompt = prompt_no_input_template % conversation | |
| prompt = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| input_ids = prompt["input_ids"] | |
| attention_mask = prompt["attention_mask"] | |
| if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
| input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| attention_mask = attention_mask[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
| intervention_locations = torch.tensor([get_intervention_locations( | |
| last_position=input_ids.shape[-1], positions="f5+l5", | |
| num_interventions=len(reft_model.interventions))]).permute(1, 0, 2).tolist() | |
| streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = { | |
| "base": {"input_ids": prompt["input_ids"], "attention_mask": prompt["attention_mask"]}, | |
| "unit_locations": {"sources->base": (None, intervention_locations)}, | |
| "intervene_on_prompt": True, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "eos_token_id": tokenizer.eos_token_id, | |
| "early_stopping": True, | |
| "no_repeat_ngram_size": 5, | |
| "repetition_penalty": repetition_penalty, | |
| "do_sample": False, | |
| } | |
| t = Thread(target=reft_model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for text in streamer: | |
| outputs.append(text) | |
| yield "".join(outputs) | |
| chat_interface = gr.ChatInterface( | |
| fn=generate, | |
| additional_inputs=[ | |
| gr.Slider( | |
| label="Max new tokens", | |
| minimum=1, | |
| maximum=MAX_MAX_NEW_TOKENS, | |
| step=1, | |
| value=DEFAULT_MAX_NEW_TOKENS, | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| value=1.1, | |
| ), | |
| ], | |
| stop_btn=None, | |
| examples=[ | |
| ["Hello there! How are you doing?"], | |
| ["Can you explain briefly to me what is the Python programming language?"], | |
| ["Explain the plot of Cinderella in a sentence."], | |
| ["How many hours does it take a man to eat a Helicopter?"], | |
| ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], | |
| ], | |
| ) | |
| with gr.Blocks(css="style.css") as demo: | |
| gr.Markdown(DESCRIPTION) | |
| gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
| chat_interface.render() | |
| gr.Markdown(LICENSE) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch() | |