Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from typing import Optional, Tuple | |
| import numpy as np | |
| from mmpose.registry import KEYPOINT_CODECS | |
| from .base import BaseKeypointCodec | |
| from .utils.gaussian_heatmap import (generate_gaussian_heatmaps, | |
| generate_unbiased_gaussian_heatmaps) | |
| from .utils.post_processing import get_heatmap_maximum | |
| from .utils.refinement import refine_keypoints, refine_keypoints_dark | |
| class MSRAHeatmap(BaseKeypointCodec): | |
| """Represent keypoints as heatmaps via "MSRA" approach. See the paper: | |
| `Simple Baselines for Human Pose Estimation and Tracking`_ by Xiao et al | |
| (2018) for details. | |
| Note: | |
| - instance number: N | |
| - keypoint number: K | |
| - keypoint dimension: D | |
| - image size: [w, h] | |
| - heatmap size: [W, H] | |
| Encoded: | |
| - heatmaps (np.ndarray): The generated heatmap in shape (K, H, W) | |
| where [W, H] is the `heatmap_size` | |
| - keypoint_weights (np.ndarray): The target weights in shape (N, K) | |
| Args: | |
| input_size (tuple): Image size in [w, h] | |
| heatmap_size (tuple): Heatmap size in [W, H] | |
| sigma (float): The sigma value of the Gaussian heatmap | |
| unbiased (bool): Whether use unbiased method (DarkPose) in ``'msra'`` | |
| encoding. See `Dark Pose`_ for details. Defaults to ``False`` | |
| blur_kernel_size (int): The Gaussian blur kernel size of the heatmap | |
| modulation in DarkPose. The kernel size and sigma should follow | |
| the expirical formula :math:`sigma = 0.3*((ks-1)*0.5-1)+0.8`. | |
| Defaults to 11 | |
| .. _`Simple Baselines for Human Pose Estimation and Tracking`: | |
| https://arxiv.org/abs/1804.06208 | |
| .. _`Dark Pose`: https://arxiv.org/abs/1910.06278 | |
| """ | |
| label_mapping_table = dict(keypoint_weights='keypoint_weights', ) | |
| field_mapping_table = dict(heatmaps='heatmaps', ) | |
| def __init__(self, | |
| input_size: Tuple[int, int], | |
| heatmap_size: Tuple[int, int], | |
| sigma: float, | |
| unbiased: bool = False, | |
| blur_kernel_size: int = 11) -> None: | |
| super().__init__() | |
| self.input_size = input_size | |
| self.heatmap_size = heatmap_size | |
| self.sigma = sigma | |
| self.unbiased = unbiased | |
| # The Gaussian blur kernel size of the heatmap modulation | |
| # in DarkPose and the sigma value follows the expirical | |
| # formula :math:`sigma = 0.3*((ks-1)*0.5-1)+0.8` | |
| # which gives: | |
| # sigma~=3 if ks=17 | |
| # sigma=2 if ks=11; | |
| # sigma~=1.5 if ks=7; | |
| # sigma~=1 if ks=3; | |
| self.blur_kernel_size = blur_kernel_size | |
| self.scale_factor = (np.array(input_size) / | |
| heatmap_size).astype(np.float32) | |
| def encode(self, | |
| keypoints: np.ndarray, | |
| keypoints_visible: Optional[np.ndarray] = None) -> dict: | |
| """Encode keypoints into heatmaps. Note that the original keypoint | |
| coordinates should be in the input image space. | |
| Args: | |
| keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D) | |
| keypoints_visible (np.ndarray): Keypoint visibilities in shape | |
| (N, K) | |
| Returns: | |
| dict: | |
| - heatmaps (np.ndarray): The generated heatmap in shape | |
| (K, H, W) where [W, H] is the `heatmap_size` | |
| - keypoint_weights (np.ndarray): The target weights in shape | |
| (N, K) | |
| """ | |
| assert keypoints.shape[0] == 1, ( | |
| f'{self.__class__.__name__} only support single-instance ' | |
| 'keypoint encoding') | |
| if keypoints_visible is None: | |
| keypoints_visible = np.ones(keypoints.shape[:2], dtype=np.float32) | |
| if self.unbiased: | |
| heatmaps, keypoint_weights = generate_unbiased_gaussian_heatmaps( | |
| heatmap_size=self.heatmap_size, | |
| keypoints=keypoints / self.scale_factor, | |
| keypoints_visible=keypoints_visible, | |
| sigma=self.sigma) | |
| else: | |
| heatmaps, keypoint_weights = generate_gaussian_heatmaps( | |
| heatmap_size=self.heatmap_size, | |
| keypoints=keypoints / self.scale_factor, | |
| keypoints_visible=keypoints_visible, | |
| sigma=self.sigma) | |
| encoded = dict(heatmaps=heatmaps, keypoint_weights=keypoint_weights) | |
| return encoded | |
| def decode(self, encoded: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: | |
| """Decode keypoint coordinates from heatmaps. The decoded keypoint | |
| coordinates are in the input image space. | |
| Args: | |
| encoded (np.ndarray): Heatmaps in shape (K, H, W) | |
| Returns: | |
| tuple: | |
| - keypoints (np.ndarray): Decoded keypoint coordinates in shape | |
| (N, K, D) | |
| - scores (np.ndarray): The keypoint scores in shape (N, K). It | |
| usually represents the confidence of the keypoint prediction | |
| """ | |
| heatmaps = encoded.copy() | |
| K, H, W = heatmaps.shape | |
| keypoints, scores = get_heatmap_maximum(heatmaps) | |
| # Unsqueeze the instance dimension for single-instance results | |
| keypoints, scores = keypoints[None], scores[None] | |
| if self.unbiased: | |
| # Alleviate biased coordinate | |
| keypoints = refine_keypoints_dark( | |
| keypoints, heatmaps, blur_kernel_size=self.blur_kernel_size) | |
| else: | |
| keypoints = refine_keypoints(keypoints, heatmaps) | |
| # Restore the keypoint scale | |
| keypoints = keypoints * self.scale_factor | |
| return keypoints, scores | |