Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import logging | |
| from typing import Dict, List, Optional, Sequence, Tuple, Union | |
| import mmcv | |
| import numpy as np | |
| import torch | |
| from mmengine.config import Config, ConfigDict | |
| from mmengine.infer.infer import ModelType | |
| from mmengine.logging import print_log | |
| from mmengine.model import revert_sync_batchnorm | |
| from mmengine.registry import init_default_scope | |
| from mmengine.structures import InstanceData | |
| from mmpose.evaluation.functional import nearby_joints_nms, nms | |
| from mmpose.registry import INFERENCERS | |
| from mmpose.structures import merge_data_samples | |
| from .base_mmpose_inferencer import BaseMMPoseInferencer | |
| InstanceList = List[InstanceData] | |
| InputType = Union[str, np.ndarray] | |
| InputsType = Union[InputType, Sequence[InputType]] | |
| PredType = Union[InstanceData, InstanceList] | |
| ImgType = Union[np.ndarray, Sequence[np.ndarray]] | |
| ConfigType = Union[Config, ConfigDict] | |
| ResType = Union[Dict, List[Dict], InstanceData, List[InstanceData]] | |
| class Pose2DInferencer(BaseMMPoseInferencer): | |
| """The inferencer for 2D pose estimation. | |
| Args: | |
| model (str, optional): Pretrained 2D pose estimation algorithm. | |
| It's the path to the config file or the model name defined in | |
| metafile. For example, it could be: | |
| - model alias, e.g. ``'body'``, | |
| - config name, e.g. ``'simcc_res50_8xb64-210e_coco-256x192'``, | |
| - config path | |
| Defaults to ``None``. | |
| weights (str, optional): Path to the checkpoint. If it is not | |
| specified and "model" is a model name of metafile, the weights | |
| will be loaded from metafile. Defaults to None. | |
| device (str, optional): Device to run inference. If None, the | |
| available device will be automatically used. Defaults to None. | |
| scope (str, optional): The scope of the model. Defaults to "mmpose". | |
| det_model (str, optional): Config path or alias of detection model. | |
| Defaults to None. | |
| det_weights (str, optional): Path to the checkpoints of detection | |
| model. Defaults to None. | |
| det_cat_ids (int or list[int], optional): Category id for | |
| detection model. Defaults to None. | |
| """ | |
| preprocess_kwargs: set = {'bbox_thr', 'nms_thr', 'bboxes'} | |
| forward_kwargs: set = {'merge_results', 'pose_based_nms'} | |
| visualize_kwargs: set = { | |
| 'return_vis', | |
| 'show', | |
| 'wait_time', | |
| 'draw_bbox', | |
| 'radius', | |
| 'thickness', | |
| 'kpt_thr', | |
| 'vis_out_dir', | |
| 'skeleton_style', | |
| 'draw_heatmap', | |
| 'black_background', | |
| } | |
| postprocess_kwargs: set = {'pred_out_dir', 'return_datasample'} | |
| def __init__(self, | |
| model: Union[ModelType, str], | |
| weights: Optional[str] = None, | |
| device: Optional[str] = None, | |
| scope: Optional[str] = 'mmpose', | |
| det_model: Optional[Union[ModelType, str]] = None, | |
| det_weights: Optional[str] = None, | |
| det_cat_ids: Optional[Union[int, Tuple]] = None, | |
| show_progress: bool = False) -> None: | |
| init_default_scope(scope) | |
| super().__init__( | |
| model=model, | |
| weights=weights, | |
| device=device, | |
| scope=scope, | |
| show_progress=show_progress) | |
| self.model = revert_sync_batchnorm(self.model) | |
| # assign dataset metainfo to self.visualizer | |
| self.visualizer.set_dataset_meta(self.model.dataset_meta) | |
| # initialize detector for top-down models | |
| if self.cfg.data_mode == 'topdown': | |
| self._init_detector( | |
| det_model=det_model, | |
| det_weights=det_weights, | |
| det_cat_ids=det_cat_ids, | |
| device=device, | |
| ) | |
| self._video_input = False | |
| def update_model_visualizer_settings(self, | |
| draw_heatmap: bool = False, | |
| skeleton_style: str = 'mmpose', | |
| **kwargs) -> None: | |
| """Update the settings of models and visualizer according to inference | |
| arguments. | |
| Args: | |
| draw_heatmaps (bool, optional): Flag to visualize predicted | |
| heatmaps. If not provided, it defaults to False. | |
| skeleton_style (str, optional): Skeleton style selection. Valid | |
| options are 'mmpose' and 'openpose'. Defaults to 'mmpose'. | |
| """ | |
| self.model.test_cfg['output_heatmaps'] = draw_heatmap | |
| if skeleton_style not in ['mmpose', 'openpose']: | |
| raise ValueError('`skeleton_style` must be either \'mmpose\' ' | |
| 'or \'openpose\'') | |
| if skeleton_style == 'openpose': | |
| self.visualizer.set_dataset_meta(self.model.dataset_meta, | |
| skeleton_style) | |
| def preprocess_single(self, | |
| input: InputType, | |
| index: int, | |
| bbox_thr: float = 0.3, | |
| nms_thr: float = 0.3, | |
| bboxes: Union[List[List], List[np.ndarray], | |
| np.ndarray] = []): | |
| """Process a single input into a model-feedable format. | |
| Args: | |
| input (InputType): Input given by user. | |
| index (int): index of the input | |
| bbox_thr (float): threshold for bounding box detection. | |
| Defaults to 0.3. | |
| nms_thr (float): IoU threshold for bounding box NMS. | |
| Defaults to 0.3. | |
| Yields: | |
| Any: Data processed by the ``pipeline`` and ``collate_fn``. | |
| """ | |
| if isinstance(input, str): | |
| data_info = dict(img_path=input) | |
| else: | |
| data_info = dict(img=input, img_path=f'{index}.jpg'.rjust(10, '0')) | |
| data_info.update(self.model.dataset_meta) | |
| if self.cfg.data_mode == 'topdown': | |
| bboxes = [] | |
| if self.detector is not None: | |
| try: | |
| det_results = self.detector( | |
| input, return_datasamples=True)['predictions'] | |
| except ValueError: | |
| print_log( | |
| 'Support for mmpose and mmdet versions up to 3.1.0 ' | |
| 'will be discontinued in upcoming releases. To ' | |
| 'ensure ongoing compatibility, please upgrade to ' | |
| 'mmdet version 3.2.0 or later.', | |
| logger='current', | |
| level=logging.WARNING) | |
| det_results = self.detector( | |
| input, return_datasample=True)['predictions'] | |
| pred_instance = det_results[0].pred_instances.cpu().numpy() | |
| bboxes = np.concatenate( | |
| (pred_instance.bboxes, pred_instance.scores[:, None]), | |
| axis=1) | |
| label_mask = np.zeros(len(bboxes), dtype=np.uint8) | |
| for cat_id in self.det_cat_ids: | |
| label_mask = np.logical_or(label_mask, | |
| pred_instance.labels == cat_id) | |
| bboxes = bboxes[np.logical_and( | |
| label_mask, pred_instance.scores > bbox_thr)] | |
| bboxes = bboxes[nms(bboxes, nms_thr)] | |
| data_infos = [] | |
| if len(bboxes) > 0: | |
| for bbox in bboxes: | |
| inst = data_info.copy() | |
| inst['bbox'] = bbox[None, :4] | |
| inst['bbox_score'] = bbox[4:5] | |
| data_infos.append(self.pipeline(inst)) | |
| else: | |
| inst = data_info.copy() | |
| # get bbox from the image size | |
| if isinstance(input, str): | |
| input = mmcv.imread(input) | |
| h, w = input.shape[:2] | |
| inst['bbox'] = np.array([[0, 0, w, h]], dtype=np.float32) | |
| inst['bbox_score'] = np.ones(1, dtype=np.float32) | |
| data_infos.append(self.pipeline(inst)) | |
| else: # bottom-up | |
| data_infos = [self.pipeline(data_info)] | |
| return data_infos | |
| def forward(self, | |
| inputs: Union[dict, tuple], | |
| merge_results: bool = True, | |
| bbox_thr: float = -1, | |
| pose_based_nms: bool = False): | |
| """Performs a forward pass through the model. | |
| Args: | |
| inputs (Union[dict, tuple]): The input data to be processed. Can | |
| be either a dictionary or a tuple. | |
| merge_results (bool, optional): Whether to merge data samples, | |
| default to True. This is only applicable when the data_mode | |
| is 'topdown'. | |
| bbox_thr (float, optional): A threshold for the bounding box | |
| scores. Bounding boxes with scores greater than this value | |
| will be retained. Default value is -1 which retains all | |
| bounding boxes. | |
| Returns: | |
| A list of data samples with prediction instances. | |
| """ | |
| data_samples = self.model.test_step(inputs) | |
| if self.cfg.data_mode == 'topdown' and merge_results: | |
| data_samples = [merge_data_samples(data_samples)] | |
| if bbox_thr > 0: | |
| for ds in data_samples: | |
| if 'bbox_scores' in ds.pred_instances: | |
| ds.pred_instances = ds.pred_instances[ | |
| ds.pred_instances.bbox_scores > bbox_thr] | |
| if pose_based_nms: | |
| for ds in data_samples: | |
| if len(ds.pred_instances) == 0: | |
| continue | |
| kpts = ds.pred_instances.keypoints | |
| scores = ds.pred_instances.bbox_scores | |
| num_keypoints = kpts.shape[-2] | |
| kept_indices = nearby_joints_nms( | |
| [ | |
| dict(keypoints=kpts[i], score=scores[i]) | |
| for i in range(len(kpts)) | |
| ], | |
| num_nearby_joints_thr=num_keypoints // 3, | |
| ) | |
| ds.pred_instances = ds.pred_instances[kept_indices] | |
| return data_samples | |