Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import logging | |
| import mimetypes | |
| import os | |
| import time | |
| from argparse import ArgumentParser | |
| import cv2 | |
| import json_tricks as json | |
| import mmcv | |
| import mmengine | |
| import numpy as np | |
| from mmengine.logging import print_log | |
| from mmpose.apis import inference_bottomup, init_model | |
| from mmpose.registry import VISUALIZERS | |
| from mmpose.structures import split_instances | |
| def process_one_image(args, | |
| img, | |
| pose_estimator, | |
| visualizer=None, | |
| show_interval=0): | |
| """Visualize predicted keypoints (and heatmaps) of one image.""" | |
| # inference a single image | |
| batch_results = inference_bottomup(pose_estimator, img) | |
| results = batch_results[0] | |
| # show the results | |
| if isinstance(img, str): | |
| img = mmcv.imread(img, channel_order='rgb') | |
| elif isinstance(img, np.ndarray): | |
| img = mmcv.bgr2rgb(img) | |
| if visualizer is not None: | |
| visualizer.add_datasample( | |
| 'result', | |
| img, | |
| data_sample=results, | |
| draw_gt=False, | |
| draw_bbox=False, | |
| draw_heatmap=args.draw_heatmap, | |
| show_kpt_idx=args.show_kpt_idx, | |
| show=args.show, | |
| wait_time=show_interval, | |
| kpt_thr=args.kpt_thr) | |
| return results.pred_instances | |
| def parse_args(): | |
| parser = ArgumentParser() | |
| parser.add_argument('config', help='Config file') | |
| parser.add_argument('checkpoint', help='Checkpoint file') | |
| parser.add_argument( | |
| '--input', type=str, default='', help='Image/Video file') | |
| parser.add_argument( | |
| '--show', | |
| action='store_true', | |
| default=False, | |
| help='whether to show img') | |
| parser.add_argument( | |
| '--output-root', | |
| type=str, | |
| default='', | |
| help='root of the output img file. ' | |
| 'Default not saving the visualization images.') | |
| parser.add_argument( | |
| '--save-predictions', | |
| action='store_true', | |
| default=False, | |
| help='whether to save predicted results') | |
| parser.add_argument( | |
| '--device', default='cuda:0', help='Device used for inference') | |
| parser.add_argument( | |
| '--draw-heatmap', | |
| action='store_true', | |
| help='Visualize the predicted heatmap') | |
| parser.add_argument( | |
| '--show-kpt-idx', | |
| action='store_true', | |
| default=False, | |
| help='Whether to show the index of keypoints') | |
| parser.add_argument( | |
| '--kpt-thr', type=float, default=0.3, help='Keypoint score threshold') | |
| parser.add_argument( | |
| '--radius', | |
| type=int, | |
| default=3, | |
| help='Keypoint radius for visualization') | |
| parser.add_argument( | |
| '--thickness', | |
| type=int, | |
| default=1, | |
| help='Link thickness for visualization') | |
| parser.add_argument( | |
| '--show-interval', type=int, default=0, help='Sleep seconds per frame') | |
| args = parser.parse_args() | |
| return args | |
| def main(): | |
| args = parse_args() | |
| assert args.show or (args.output_root != '') | |
| assert args.input != '' | |
| output_file = None | |
| if args.output_root: | |
| mmengine.mkdir_or_exist(args.output_root) | |
| output_file = os.path.join(args.output_root, | |
| os.path.basename(args.input)) | |
| if args.input == 'webcam': | |
| output_file += '.mp4' | |
| if args.save_predictions: | |
| assert args.output_root != '' | |
| args.pred_save_path = f'{args.output_root}/results_' \ | |
| f'{os.path.splitext(os.path.basename(args.input))[0]}.json' | |
| # build the model from a config file and a checkpoint file | |
| if args.draw_heatmap: | |
| cfg_options = dict(model=dict(test_cfg=dict(output_heatmaps=True))) | |
| else: | |
| cfg_options = None | |
| model = init_model( | |
| args.config, | |
| args.checkpoint, | |
| device=args.device, | |
| cfg_options=cfg_options) | |
| # build visualizer | |
| model.cfg.visualizer.radius = args.radius | |
| model.cfg.visualizer.line_width = args.thickness | |
| visualizer = VISUALIZERS.build(model.cfg.visualizer) | |
| visualizer.set_dataset_meta(model.dataset_meta) | |
| if args.input == 'webcam': | |
| input_type = 'webcam' | |
| else: | |
| input_type = mimetypes.guess_type(args.input)[0].split('/')[0] | |
| if input_type == 'image': | |
| # inference | |
| pred_instances = process_one_image( | |
| args, args.input, model, visualizer, show_interval=0) | |
| if args.save_predictions: | |
| pred_instances_list = split_instances(pred_instances) | |
| if output_file: | |
| img_vis = visualizer.get_image() | |
| mmcv.imwrite(mmcv.rgb2bgr(img_vis), output_file) | |
| elif input_type in ['webcam', 'video']: | |
| if args.input == 'webcam': | |
| cap = cv2.VideoCapture(0) | |
| else: | |
| cap = cv2.VideoCapture(args.input) | |
| video_writer = None | |
| pred_instances_list = [] | |
| frame_idx = 0 | |
| while cap.isOpened(): | |
| success, frame = cap.read() | |
| frame_idx += 1 | |
| if not success: | |
| break | |
| pred_instances = process_one_image(args, frame, model, visualizer, | |
| 0.001) | |
| if args.save_predictions: | |
| # save prediction results | |
| pred_instances_list.append( | |
| dict( | |
| frame_id=frame_idx, | |
| instances=split_instances(pred_instances))) | |
| # output videos | |
| if output_file: | |
| frame_vis = visualizer.get_image() | |
| if video_writer is None: | |
| fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
| # the size of the image with visualization may vary | |
| # depending on the presence of heatmaps | |
| video_writer = cv2.VideoWriter( | |
| output_file, | |
| fourcc, | |
| 25, # saved fps | |
| (frame_vis.shape[1], frame_vis.shape[0])) | |
| video_writer.write(mmcv.rgb2bgr(frame_vis)) | |
| if args.show: | |
| # press ESC to exit | |
| if cv2.waitKey(5) & 0xFF == 27: | |
| break | |
| time.sleep(args.show_interval) | |
| if video_writer: | |
| video_writer.release() | |
| cap.release() | |
| else: | |
| args.save_predictions = False | |
| raise ValueError( | |
| f'file {os.path.basename(args.input)} has invalid format.') | |
| if args.save_predictions: | |
| with open(args.pred_save_path, 'w') as f: | |
| json.dump( | |
| dict( | |
| meta_info=model.dataset_meta, | |
| instance_info=pred_instances_list), | |
| f, | |
| indent='\t') | |
| print(f'predictions have been saved at {args.pred_save_path}') | |
| if output_file: | |
| input_type = input_type.replace('webcam', 'video') | |
| print_log( | |
| f'the output {input_type} has been saved at {output_file}', | |
| logger='current', | |
| level=logging.INFO) | |
| if __name__ == '__main__': | |
| main() | |