Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
✨ upgrade aggregation model
Browse filesSigned-off-by: peter szemraj <[email protected]>
- aggregate.py +30 -79
- app.py +7 -5
aggregate.py
CHANGED
|
@@ -1,12 +1,10 @@
|
|
| 1 |
"""
|
| 2 |
-
aggregate.py - module for
|
| 3 |
-
Primary usage is through the BatchAggregator class.
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
2. The language model does it.
|
| 8 |
-
3. Yaay!
|
| 9 |
"""
|
|
|
|
| 10 |
import logging
|
| 11 |
import pprint as pp
|
| 12 |
import time
|
|
@@ -14,8 +12,6 @@ import time
|
|
| 14 |
import torch
|
| 15 |
from transformers import GenerationConfig, pipeline
|
| 16 |
|
| 17 |
-
from utils import compare_model_size
|
| 18 |
-
|
| 19 |
# Setting up logging
|
| 20 |
logging.basicConfig(
|
| 21 |
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
|
@@ -27,42 +23,30 @@ class BatchAggregator:
|
|
| 27 |
BatchAggregator is a class for aggregating text from multiple sources.
|
| 28 |
|
| 29 |
Usage:
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
"""
|
| 35 |
|
| 36 |
GENERIC_CONFIG = GenerationConfig(
|
| 37 |
-
|
|
|
|
| 38 |
early_stopping=True,
|
| 39 |
do_sample=False,
|
| 40 |
-
|
| 41 |
-
max_new_tokens=256,
|
| 42 |
-
repetition_penalty=1.1,
|
| 43 |
-
length_penalty=1.4,
|
| 44 |
-
no_repeat_ngram_size=4,
|
| 45 |
-
encoder_no_repeat_ngram_size=5,
|
| 46 |
)
|
| 47 |
-
CONFIGURED_MODELS = [
|
| 48 |
-
"pszemraj/bart-large-mnli-dolly_hhrlhf-v1",
|
| 49 |
-
"pszemraj/bart-base-instruct-dolly_hhrlhf",
|
| 50 |
-
"pszemraj/flan-t5-large-instruct-dolly_hhrlhf",
|
| 51 |
-
"pszemraj/flan-t5-base-instruct-dolly_hhrlhf",
|
| 52 |
-
] # these have generation configs defined for this task in their model repos
|
| 53 |
-
|
| 54 |
-
DEFAULT_INSTRUCTION = "Write a comprehensive yet concise summary that pulls together the main points of the following text:"
|
| 55 |
|
| 56 |
def __init__(
|
| 57 |
self,
|
| 58 |
-
model_name: str = "pszemraj/bart-large-
|
| 59 |
force_cpu: bool = False,
|
| 60 |
**kwargs,
|
| 61 |
):
|
| 62 |
"""
|
| 63 |
__init__ initializes the BatchAggregator class.
|
| 64 |
|
| 65 |
-
:param str model_name: model name to use, default: "pszemraj/bart-large-
|
| 66 |
:param bool force_cpu: force the model to run on CPU, default: False
|
| 67 |
"""
|
| 68 |
self.device = None
|
|
@@ -87,40 +71,29 @@ class BatchAggregator:
|
|
| 87 |
self.model_name = model_name
|
| 88 |
self.aggregator = self._create_pipeline(model_name)
|
| 89 |
self._configure_model()
|
| 90 |
-
# update the generation config with the specific tokenizer
|
| 91 |
-
tokenizer_params = {
|
| 92 |
-
"decoder_start_token_id": 0
|
| 93 |
-
if "t5" in model_name.lower()
|
| 94 |
-
else self.aggregator.tokenizer.eos_token_id,
|
| 95 |
-
"eos_token_id": 1
|
| 96 |
-
if "t5" in model_name.lower()
|
| 97 |
-
else self.aggregator.tokenizer.eos_token_id,
|
| 98 |
-
"pad_token_id": 0
|
| 99 |
-
if "t5" in model_name.lower()
|
| 100 |
-
else self.aggregator.tokenizer.pad_token_id,
|
| 101 |
-
}
|
| 102 |
-
self.update_generation_config(**tokenizer_params)
|
| 103 |
|
| 104 |
def _create_pipeline(
|
| 105 |
-
self, model_name: str = "pszemraj/bart-large-
|
| 106 |
) -> pipeline:
|
| 107 |
"""
|
| 108 |
_create_pipeline creates a pipeline for the model.
|
| 109 |
|
| 110 |
-
:param str model_name: model name to use
|
| 111 |
:return pipeline: the pipeline for the model
|
| 112 |
|
| 113 |
:raises Exception: if the pipeline cannot be created
|
| 114 |
"""
|
| 115 |
-
|
|
|
|
|
|
|
| 116 |
try:
|
| 117 |
self.logger.info(
|
| 118 |
-
f"Creating pipeline with model {model_name} on device {
|
| 119 |
)
|
| 120 |
return pipeline(
|
| 121 |
"text2text-generation",
|
| 122 |
model=model_name,
|
| 123 |
-
|
| 124 |
torch_dtype=torch.float32,
|
| 125 |
)
|
| 126 |
except Exception as e:
|
|
@@ -137,36 +110,16 @@ class BatchAggregator:
|
|
| 137 |
except Exception as e:
|
| 138 |
self.logger.warning(f"Could not compile model with Torch 2.0: {e}")
|
| 139 |
|
| 140 |
-
|
| 141 |
-
self.logger.info("Setting generation config to general defaults")
|
| 142 |
-
self._set_default_generation_config()
|
| 143 |
-
else:
|
| 144 |
-
try:
|
| 145 |
-
self.logger.info("Loading generation config from hub")
|
| 146 |
-
self.aggregator.model.generation_config = (
|
| 147 |
-
GenerationConfig.from_pretrained(self.model_name)
|
| 148 |
-
)
|
| 149 |
-
except Exception as e:
|
| 150 |
-
self.logger.warning(
|
| 151 |
-
f"Could not load generation config, using defaults: {e}"
|
| 152 |
-
)
|
| 153 |
-
self._set_default_generation_config()
|
| 154 |
-
|
| 155 |
self.logger.info(self.aggregator.model.generation_config.to_json_string())
|
| 156 |
|
| 157 |
def _set_default_generation_config(self):
|
| 158 |
"""
|
| 159 |
Set the default generation configuration for the model.
|
| 160 |
"""
|
| 161 |
-
self.aggregator.model.generation_config
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
"large"
|
| 165 |
-
or "xl" in self.model_name.lower()
|
| 166 |
-
or compare_model_size(self.model_name, 500)
|
| 167 |
-
):
|
| 168 |
-
upd = {"num_beams": 4}
|
| 169 |
-
self.update_generation_config(**upd)
|
| 170 |
|
| 171 |
def update_generation_config(self, **kwargs):
|
| 172 |
"""
|
|
@@ -176,7 +129,6 @@ class BatchAggregator:
|
|
| 176 |
**kwargs: The parameters to update in the generation configuration.
|
| 177 |
"""
|
| 178 |
self.logger.info(f"Updating generation config with {pp.pformat(kwargs)}")
|
| 179 |
-
|
| 180 |
self.aggregator.model.generation_config.update(**kwargs)
|
| 181 |
|
| 182 |
def get_generation_config(self) -> dict:
|
|
@@ -200,33 +152,32 @@ class BatchAggregator:
|
|
| 200 |
def infer_aggregate(
|
| 201 |
self,
|
| 202 |
text_list: list,
|
| 203 |
-
instruction: str =
|
| 204 |
**kwargs,
|
| 205 |
) -> str:
|
| 206 |
-
|
| 207 |
infer_aggregate - infers a consolidated summary from a list of texts.
|
| 208 |
|
| 209 |
Args:
|
| 210 |
text_list (list): The texts to summarize.
|
| 211 |
-
instruction (str):
|
| 212 |
**kwargs: Additional parameters to update in the generation configuration.
|
| 213 |
|
| 214 |
Returns:
|
| 215 |
The generated summary.
|
| 216 |
"""
|
| 217 |
-
joined_text = "\n".join(text_list)
|
| 218 |
-
prompt = f"{instruction}\n\n{joined_text}\n"
|
| 219 |
if kwargs:
|
| 220 |
self.update_generation_config(**kwargs)
|
| 221 |
st = time.perf_counter()
|
| 222 |
self.logger.info(f"inference on {len(text_list)} texts ...")
|
| 223 |
result = self.aggregator(
|
| 224 |
-
|
| 225 |
generation_config=self.aggregator.model.generation_config,
|
| 226 |
)[0]["generated_text"]
|
| 227 |
self.logger.info(f"Done. runtime:\t{round(time.perf_counter() - st, 2)}s")
|
| 228 |
self.logger.info(
|
| 229 |
-
f"Input tokens:\t{self.count_tokens(
|
| 230 |
)
|
| 231 |
self.logger.debug(f"Generated text:\n{result}")
|
| 232 |
|
|
|
|
| 1 |
"""
|
| 2 |
+
aggregate.py - module for 'reducing' multiple 'summary chunks' into one
|
|
|
|
| 3 |
|
| 4 |
+
an overly complicated class for legacy compatibility reasons, for usage of the
|
| 5 |
+
2024 map-reduce models see hf.co/pszemraj/bart-large-summary-map-reduce#usage
|
|
|
|
|
|
|
| 6 |
"""
|
| 7 |
+
|
| 8 |
import logging
|
| 9 |
import pprint as pp
|
| 10 |
import time
|
|
|
|
| 12 |
import torch
|
| 13 |
from transformers import GenerationConfig, pipeline
|
| 14 |
|
|
|
|
|
|
|
| 15 |
# Setting up logging
|
| 16 |
logging.basicConfig(
|
| 17 |
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
|
|
|
| 23 |
BatchAggregator is a class for aggregating text from multiple sources.
|
| 24 |
|
| 25 |
Usage:
|
| 26 |
+
from aggregate import BatchAggregator
|
| 27 |
+
aggregator = BatchAggregator()
|
| 28 |
+
agg = aggregator.infer_aggregate(["This is a test", "This is another test"])
|
| 29 |
+
print(agg)
|
| 30 |
"""
|
| 31 |
|
| 32 |
GENERIC_CONFIG = GenerationConfig(
|
| 33 |
+
max_new_tokens=512,
|
| 34 |
+
num_beams=4,
|
| 35 |
early_stopping=True,
|
| 36 |
do_sample=False,
|
| 37 |
+
truncation=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
def __init__(
|
| 41 |
self,
|
| 42 |
+
model_name: str = "pszemraj/bart-large-summary-map-reduce",
|
| 43 |
force_cpu: bool = False,
|
| 44 |
**kwargs,
|
| 45 |
):
|
| 46 |
"""
|
| 47 |
__init__ initializes the BatchAggregator class.
|
| 48 |
|
| 49 |
+
:param str model_name: model name to use, default: "pszemraj/bart-large-summary-map-reduce"
|
| 50 |
:param bool force_cpu: force the model to run on CPU, default: False
|
| 51 |
"""
|
| 52 |
self.device = None
|
|
|
|
| 71 |
self.model_name = model_name
|
| 72 |
self.aggregator = self._create_pipeline(model_name)
|
| 73 |
self._configure_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
def _create_pipeline(
|
| 76 |
+
self, model_name: str = "pszemraj/bart-large-summary-map-reduce"
|
| 77 |
) -> pipeline:
|
| 78 |
"""
|
| 79 |
_create_pipeline creates a pipeline for the model.
|
| 80 |
|
| 81 |
+
:param str model_name: model name to use
|
| 82 |
:return pipeline: the pipeline for the model
|
| 83 |
|
| 84 |
:raises Exception: if the pipeline cannot be created
|
| 85 |
"""
|
| 86 |
+
device_map = (
|
| 87 |
+
"auto" if torch.cuda.is_available() and not self.force_cpu else "cpu"
|
| 88 |
+
)
|
| 89 |
try:
|
| 90 |
self.logger.info(
|
| 91 |
+
f"Creating pipeline with model {model_name} on device {device_map}"
|
| 92 |
)
|
| 93 |
return pipeline(
|
| 94 |
"text2text-generation",
|
| 95 |
model=model_name,
|
| 96 |
+
device_map=device_map,
|
| 97 |
torch_dtype=torch.float32,
|
| 98 |
)
|
| 99 |
except Exception as e:
|
|
|
|
| 110 |
except Exception as e:
|
| 111 |
self.logger.warning(f"Could not compile model with Torch 2.0: {e}")
|
| 112 |
|
| 113 |
+
self._set_default_generation_config()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
self.logger.info(self.aggregator.model.generation_config.to_json_string())
|
| 115 |
|
| 116 |
def _set_default_generation_config(self):
|
| 117 |
"""
|
| 118 |
Set the default generation configuration for the model.
|
| 119 |
"""
|
| 120 |
+
self.aggregator.model.generation_config.update(
|
| 121 |
+
**self.GENERIC_CONFIG.to_diff_dict()
|
| 122 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
def update_generation_config(self, **kwargs):
|
| 125 |
"""
|
|
|
|
| 129 |
**kwargs: The parameters to update in the generation configuration.
|
| 130 |
"""
|
| 131 |
self.logger.info(f"Updating generation config with {pp.pformat(kwargs)}")
|
|
|
|
| 132 |
self.aggregator.model.generation_config.update(**kwargs)
|
| 133 |
|
| 134 |
def get_generation_config(self) -> dict:
|
|
|
|
| 152 |
def infer_aggregate(
|
| 153 |
self,
|
| 154 |
text_list: list,
|
| 155 |
+
instruction: str = None, # Kept for backward compatibility but not used
|
| 156 |
**kwargs,
|
| 157 |
) -> str:
|
| 158 |
+
"""
|
| 159 |
infer_aggregate - infers a consolidated summary from a list of texts.
|
| 160 |
|
| 161 |
Args:
|
| 162 |
text_list (list): The texts to summarize.
|
| 163 |
+
instruction (str): Not used by this model, kept for compatibility.
|
| 164 |
**kwargs: Additional parameters to update in the generation configuration.
|
| 165 |
|
| 166 |
Returns:
|
| 167 |
The generated summary.
|
| 168 |
"""
|
| 169 |
+
joined_text = "\n\n".join(text_list)
|
|
|
|
| 170 |
if kwargs:
|
| 171 |
self.update_generation_config(**kwargs)
|
| 172 |
st = time.perf_counter()
|
| 173 |
self.logger.info(f"inference on {len(text_list)} texts ...")
|
| 174 |
result = self.aggregator(
|
| 175 |
+
joined_text,
|
| 176 |
generation_config=self.aggregator.model.generation_config,
|
| 177 |
)[0]["generated_text"]
|
| 178 |
self.logger.info(f"Done. runtime:\t{round(time.perf_counter() - st, 2)}s")
|
| 179 |
self.logger.info(
|
| 180 |
+
f"Input tokens:\t{self.count_tokens(joined_text)}. Output tokens:\t{self.count_tokens(result)}"
|
| 181 |
)
|
| 182 |
self.logger.debug(f"Generated text:\n{result}")
|
| 183 |
|
app.py
CHANGED
|
@@ -14,6 +14,7 @@ Optional Environment Variables:
|
|
| 14 |
APP_MAX_WORDS (int): the maximum number of words to use for summarization
|
| 15 |
APP_OCR_MAX_PAGES (int): the maximum number of pages to use for OCR
|
| 16 |
"""
|
|
|
|
| 17 |
import argparse
|
| 18 |
import contextlib
|
| 19 |
import gc
|
|
@@ -77,7 +78,7 @@ TOKEN_BATCH_OPTIONS = [
|
|
| 77 |
] # token batch sizes users can choose from
|
| 78 |
|
| 79 |
SUMMARY_PLACEHOLDER = "<p><em>Output will appear below:</em></p>"
|
| 80 |
-
AGGREGATE_MODEL = "
|
| 81 |
|
| 82 |
# if duplicating space: uncomment this line to adjust the max words
|
| 83 |
# os.environ["APP_MAX_WORDS"] = str(2048) # set the max words to 2048
|
|
@@ -488,7 +489,7 @@ if __name__ == "__main__":
|
|
| 488 |
with demo:
|
| 489 |
gr.Markdown(
|
| 490 |
"""# Document Summarization with Long-Document Transformers
|
| 491 |
-
|
| 492 |
An example use case for fine-tuned long document transformers. Model(s) are trained on [book summaries](https://hf.co/datasets/kmfoda/booksum). Architectures [in this demo](https://hf.co/spaces/pszemraj/document-summarization) are [LongT5-base](https://hf.co/pszemraj/long-t5-tglobal-base-16384-book-summary) and [Pegasus-X-Large](https://hf.co/pszemraj/pegasus-x-large-book-summary).
|
| 493 |
|
| 494 |
**Want more performance?** Run this demo from a free [Google Colab GPU](https://colab.research.google.com/gist/pszemraj/52f67cf7326e780155812a6a1f9bb724/document-summarization-on-gpu.ipynb)
|
|
@@ -497,7 +498,7 @@ if __name__ == "__main__":
|
|
| 497 |
with gr.Column():
|
| 498 |
gr.Markdown(
|
| 499 |
"""## Load Inputs & Select Parameters
|
| 500 |
-
|
| 501 |
Enter/paste text below, or upload a file. Pick a model & adjust params (_optional_), and press **Summarize!**
|
| 502 |
|
| 503 |
See [the guide doc](https://gist.github.com/pszemraj/722a7ba443aa3a671b02d87038375519) for details.
|
|
@@ -596,8 +597,9 @@ if __name__ == "__main__":
|
|
| 596 |
)
|
| 597 |
|
| 598 |
with gr.Column():
|
| 599 |
-
gr.Markdown(
|
| 600 |
-
|
|
|
|
| 601 |
Refer to [the guide doc](https://gist.github.com/pszemraj/722a7ba443aa3a671b02d87038375519) for what these are, and how they impact _quality_ and _speed_.
|
| 602 |
"""
|
| 603 |
)
|
|
|
|
| 14 |
APP_MAX_WORDS (int): the maximum number of words to use for summarization
|
| 15 |
APP_OCR_MAX_PAGES (int): the maximum number of pages to use for OCR
|
| 16 |
"""
|
| 17 |
+
|
| 18 |
import argparse
|
| 19 |
import contextlib
|
| 20 |
import gc
|
|
|
|
| 78 |
] # token batch sizes users can choose from
|
| 79 |
|
| 80 |
SUMMARY_PLACEHOLDER = "<p><em>Output will appear below:</em></p>"
|
| 81 |
+
AGGREGATE_MODEL = "pszemraj/bart-large-summary-map-reduce" # map-reduce model
|
| 82 |
|
| 83 |
# if duplicating space: uncomment this line to adjust the max words
|
| 84 |
# os.environ["APP_MAX_WORDS"] = str(2048) # set the max words to 2048
|
|
|
|
| 489 |
with demo:
|
| 490 |
gr.Markdown(
|
| 491 |
"""# Document Summarization with Long-Document Transformers
|
| 492 |
+
|
| 493 |
An example use case for fine-tuned long document transformers. Model(s) are trained on [book summaries](https://hf.co/datasets/kmfoda/booksum). Architectures [in this demo](https://hf.co/spaces/pszemraj/document-summarization) are [LongT5-base](https://hf.co/pszemraj/long-t5-tglobal-base-16384-book-summary) and [Pegasus-X-Large](https://hf.co/pszemraj/pegasus-x-large-book-summary).
|
| 494 |
|
| 495 |
**Want more performance?** Run this demo from a free [Google Colab GPU](https://colab.research.google.com/gist/pszemraj/52f67cf7326e780155812a6a1f9bb724/document-summarization-on-gpu.ipynb)
|
|
|
|
| 498 |
with gr.Column():
|
| 499 |
gr.Markdown(
|
| 500 |
"""## Load Inputs & Select Parameters
|
| 501 |
+
|
| 502 |
Enter/paste text below, or upload a file. Pick a model & adjust params (_optional_), and press **Summarize!**
|
| 503 |
|
| 504 |
See [the guide doc](https://gist.github.com/pszemraj/722a7ba443aa3a671b02d87038375519) for details.
|
|
|
|
| 597 |
)
|
| 598 |
|
| 599 |
with gr.Column():
|
| 600 |
+
gr.Markdown(
|
| 601 |
+
"""### Advanced Settings
|
| 602 |
+
|
| 603 |
Refer to [the guide doc](https://gist.github.com/pszemraj/722a7ba443aa3a671b02d87038375519) for what these are, and how they impact _quality_ and _speed_.
|
| 604 |
"""
|
| 605 |
)
|