Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
π
Browse filesSigned-off-by: peter szemraj <[email protected]>
app.py
CHANGED
|
@@ -72,7 +72,7 @@ def proc_submission(
|
|
| 72 |
# create elaborate HTML warning
|
| 73 |
input_wc = re.split(r"\s+", input_text)
|
| 74 |
msg = f"""
|
| 75 |
-
<div style="background-color: #
|
| 76 |
<h3>Warning</h3>
|
| 77 |
<p>Input text was truncated to {max_input_length} words. This is about {100*max_input_length/len(input_wc):.2f}% of the submission.</p>
|
| 78 |
</div>
|
|
@@ -104,7 +104,7 @@ def proc_submission(
|
|
| 104 |
html = ""
|
| 105 |
html += f"<p>Runtime: {rt} minutes on CPU</p>"
|
| 106 |
if msg is not None:
|
| 107 |
-
html +=
|
| 108 |
|
| 109 |
html += ""
|
| 110 |
|
|
@@ -225,36 +225,7 @@ if __name__ == "__main__":
|
|
| 225 |
label="Beam Search: # of Beams",
|
| 226 |
value=2,
|
| 227 |
)
|
| 228 |
-
gr.Markdown(
|
| 229 |
-
"_The base model is less performant than the large model, but is faster and will accept up to 2048 words per input (Large model accepts up to 768)._"
|
| 230 |
-
)
|
| 231 |
-
with gr.Row():
|
| 232 |
-
length_penalty = gr.inputs.Slider(
|
| 233 |
-
minimum=0.5,
|
| 234 |
-
maximum=1.0,
|
| 235 |
-
label="length penalty",
|
| 236 |
-
default=0.7,
|
| 237 |
-
step=0.05,
|
| 238 |
-
)
|
| 239 |
-
token_batch_length = gr.Radio(
|
| 240 |
-
choices=[512, 768, 1024, 1536],
|
| 241 |
-
label="token batch length",
|
| 242 |
-
value=1024,
|
| 243 |
-
)
|
| 244 |
|
| 245 |
-
with gr.Row():
|
| 246 |
-
repetition_penalty = gr.inputs.Slider(
|
| 247 |
-
minimum=1.0,
|
| 248 |
-
maximum=5.0,
|
| 249 |
-
label="repetition penalty",
|
| 250 |
-
default=3.5,
|
| 251 |
-
step=0.1,
|
| 252 |
-
)
|
| 253 |
-
no_repeat_ngram_size = gr.Radio(
|
| 254 |
-
choices=[2, 3, 4],
|
| 255 |
-
label="no repeat ngram size",
|
| 256 |
-
value=3,
|
| 257 |
-
)
|
| 258 |
with gr.Row():
|
| 259 |
example_name = gr.Dropdown(
|
| 260 |
list(name_to_path.keys()),
|
|
@@ -268,10 +239,10 @@ if __name__ == "__main__":
|
|
| 268 |
label="Input Text (for summarization)",
|
| 269 |
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
| 270 |
)
|
| 271 |
-
gr.Markdown("Upload
|
| 272 |
with gr.Row():
|
| 273 |
uploaded_file = gr.File(
|
| 274 |
-
label="Upload
|
| 275 |
file_count="single",
|
| 276 |
type="file",
|
| 277 |
)
|
|
@@ -302,9 +273,37 @@ if __name__ == "__main__":
|
|
| 302 |
)
|
| 303 |
|
| 304 |
gr.Markdown("---")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
with gr.Column():
|
| 307 |
-
gr.Markdown("
|
| 308 |
gr.Markdown(
|
| 309 |
"- [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned checkpoint of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
|
| 310 |
)
|
|
|
|
| 72 |
# create elaborate HTML warning
|
| 73 |
input_wc = re.split(r"\s+", input_text)
|
| 74 |
msg = f"""
|
| 75 |
+
<div style="background-color: #FFA500; color: white; padding: 20px;">
|
| 76 |
<h3>Warning</h3>
|
| 77 |
<p>Input text was truncated to {max_input_length} words. This is about {100*max_input_length/len(input_wc):.2f}% of the submission.</p>
|
| 78 |
</div>
|
|
|
|
| 104 |
html = ""
|
| 105 |
html += f"<p>Runtime: {rt} minutes on CPU</p>"
|
| 106 |
if msg is not None:
|
| 107 |
+
html += msg
|
| 108 |
|
| 109 |
html += ""
|
| 110 |
|
|
|
|
| 225 |
label="Beam Search: # of Beams",
|
| 226 |
value=2,
|
| 227 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
with gr.Row():
|
| 230 |
example_name = gr.Dropdown(
|
| 231 |
list(name_to_path.keys()),
|
|
|
|
| 239 |
label="Input Text (for summarization)",
|
| 240 |
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
| 241 |
)
|
| 242 |
+
gr.Markdown("Upload a file (`.txt` or `.pdf`)")
|
| 243 |
with gr.Row():
|
| 244 |
uploaded_file = gr.File(
|
| 245 |
+
label="Upload file",
|
| 246 |
file_count="single",
|
| 247 |
type="file",
|
| 248 |
)
|
|
|
|
| 273 |
)
|
| 274 |
|
| 275 |
gr.Markdown("---")
|
| 276 |
+
with gr.Column():
|
| 277 |
+
gr.Markdown("### Advanced Settings")
|
| 278 |
+
with gr.Row():
|
| 279 |
+
length_penalty = gr.inputs.Slider(
|
| 280 |
+
minimum=0.5,
|
| 281 |
+
maximum=1.0,
|
| 282 |
+
label="length penalty",
|
| 283 |
+
default=0.7,
|
| 284 |
+
step=0.05,
|
| 285 |
+
)
|
| 286 |
+
token_batch_length = gr.Radio(
|
| 287 |
+
choices=[512, 768, 1024, 1536],
|
| 288 |
+
label="token batch length",
|
| 289 |
+
value=1024,
|
| 290 |
+
)
|
| 291 |
|
| 292 |
+
with gr.Row():
|
| 293 |
+
repetition_penalty = gr.inputs.Slider(
|
| 294 |
+
minimum=1.0,
|
| 295 |
+
maximum=5.0,
|
| 296 |
+
label="repetition penalty",
|
| 297 |
+
default=3.5,
|
| 298 |
+
step=0.1,
|
| 299 |
+
)
|
| 300 |
+
no_repeat_ngram_size = gr.Radio(
|
| 301 |
+
choices=[2, 3, 4],
|
| 302 |
+
label="no repeat ngram size",
|
| 303 |
+
value=3,
|
| 304 |
+
)
|
| 305 |
with gr.Column():
|
| 306 |
+
gr.Markdown("### About the Model")
|
| 307 |
gr.Markdown(
|
| 308 |
"- [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned checkpoint of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
|
| 309 |
)
|