Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
update ui
Browse filesno idea why it doesnt work
app.py
CHANGED
|
@@ -507,7 +507,7 @@ if __name__ == "__main__":
|
|
| 507 |
"""
|
| 508 |
)
|
| 509 |
with gr.Row(variant="compact"):
|
| 510 |
-
with gr.Column(
|
| 511 |
model_name = gr.Dropdown(
|
| 512 |
choices=MODEL_OPTIONS,
|
| 513 |
value=MODEL_OPTIONS[0],
|
|
@@ -537,7 +537,7 @@ if __name__ == "__main__":
|
|
| 537 |
with gr.Row():
|
| 538 |
input_text = gr.Textbox(
|
| 539 |
lines=4,
|
| 540 |
-
max_lines=
|
| 541 |
label="Text to Summarize",
|
| 542 |
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
| 543 |
)
|
|
@@ -643,18 +643,6 @@ if __name__ == "__main__":
|
|
| 643 |
label="Drop Stopwords (Pre-Truncation)",
|
| 644 |
value=False,
|
| 645 |
)
|
| 646 |
-
with gr.Column():
|
| 647 |
-
gr.Markdown("## About")
|
| 648 |
-
gr.Markdown(
|
| 649 |
-
"- Models are fine-tuned on the [🅱️ookSum dataset](https://arxiv.org/abs/2105.08209). The goal was to create a model that generalizes well and is useful for summarizing text in academic and everyday use."
|
| 650 |
-
)
|
| 651 |
-
gr.Markdown(
|
| 652 |
-
"- _Update April 2023:_ Additional models fine-tuned on the [PLOS](https://hf.co/datasets/pszemraj/scientific_lay_summarisation-plos-norm) and [ELIFE](https://hf.co/datasets/pszemraj/scientific_lay_summarisation-elife-norm) subsets of the [scientific lay summaries](https://arxiv.org/abs/2210.09932) dataset are available (see dropdown at the top)."
|
| 653 |
-
)
|
| 654 |
-
gr.Markdown(
|
| 655 |
-
"Adjust the max input words & max PDF pages for OCR by duplicating this space and [setting the environment variables](https://hf.co/docs/hub/spaces-overview#managing-secrets) `APP_MAX_WORDS` and `APP_OCR_MAX_PAGES` to the desired integer values."
|
| 656 |
-
)
|
| 657 |
-
gr.Markdown("---")
|
| 658 |
|
| 659 |
load_examples_button.click(
|
| 660 |
fn=load_single_example_text, inputs=[example_name], outputs=[input_text]
|
|
|
|
| 507 |
"""
|
| 508 |
)
|
| 509 |
with gr.Row(variant="compact"):
|
| 510 |
+
with gr.Column(variant="compact"):
|
| 511 |
model_name = gr.Dropdown(
|
| 512 |
choices=MODEL_OPTIONS,
|
| 513 |
value=MODEL_OPTIONS[0],
|
|
|
|
| 537 |
with gr.Row():
|
| 538 |
input_text = gr.Textbox(
|
| 539 |
lines=4,
|
| 540 |
+
max_lines=8,
|
| 541 |
label="Text to Summarize",
|
| 542 |
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
| 543 |
)
|
|
|
|
| 643 |
label="Drop Stopwords (Pre-Truncation)",
|
| 644 |
value=False,
|
| 645 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 646 |
|
| 647 |
load_examples_button.click(
|
| 648 |
fn=load_single_example_text, inputs=[example_name], outputs=[input_text]
|