Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
π add auth token and experimental models
Browse filesSigned-off-by: peter szemraj <[email protected]>
- app.py +3 -2
- summarize.py +6 -1
app.py
CHANGED
|
@@ -64,8 +64,9 @@ nltk.download("popular", force=True, quiet=True)
|
|
| 64 |
MODEL_OPTIONS = [
|
| 65 |
"pszemraj/long-t5-tglobal-base-16384-book-summary",
|
| 66 |
"pszemraj/long-t5-tglobal-base-sci-simplify",
|
| 67 |
-
"pszemraj/long-t5-tglobal-base-
|
| 68 |
-
"pszemraj/long-t5-tglobal-base-
|
|
|
|
| 69 |
"pszemraj/pegasus-x-large-book-summary",
|
| 70 |
] # models users can choose from
|
| 71 |
BEAM_OPTIONS = [2, 3, 4] # beam sizes users can choose from
|
|
|
|
| 64 |
MODEL_OPTIONS = [
|
| 65 |
"pszemraj/long-t5-tglobal-base-16384-book-summary",
|
| 66 |
"pszemraj/long-t5-tglobal-base-sci-simplify",
|
| 67 |
+
"pszemraj/long-t5-tglobal-base-summary-souffle-16384-loD",
|
| 68 |
+
"pszemraj/long-t5-tglobal-base-summary-souffle-16384-neftune_0.3",
|
| 69 |
+
"pszemraj/long-t5-tglobal-base-summary-souffle-16384-neftune_0.6",
|
| 70 |
"pszemraj/pegasus-x-large-book-summary",
|
| 71 |
] # models users can choose from
|
| 72 |
BEAM_OPTIONS = [2, 3, 4] # beam sizes users can choose from
|
summarize.py
CHANGED
|
@@ -2,6 +2,7 @@
|
|
| 2 |
summarize - a module for summarizing text using a model from the Hugging Face model hub
|
| 3 |
"""
|
| 4 |
import logging
|
|
|
|
| 5 |
import pprint as pp
|
| 6 |
|
| 7 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(message)s")
|
|
@@ -23,10 +24,14 @@ def load_model_and_tokenizer(model_name: str) -> tuple:
|
|
| 23 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 24 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 25 |
model_name,
|
|
|
|
| 26 |
).to(device)
|
| 27 |
model = model.eval()
|
| 28 |
|
| 29 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
logging.info(f"Loaded model {model_name} to {device}")
|
| 32 |
|
|
|
|
| 2 |
summarize - a module for summarizing text using a model from the Hugging Face model hub
|
| 3 |
"""
|
| 4 |
import logging
|
| 5 |
+
import os
|
| 6 |
import pprint as pp
|
| 7 |
|
| 8 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(message)s")
|
|
|
|
| 24 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 25 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 26 |
model_name,
|
| 27 |
+
use_auth_token=os.environ.get("HF_TOKEN", None),
|
| 28 |
).to(device)
|
| 29 |
model = model.eval()
|
| 30 |
|
| 31 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 32 |
+
model_name,
|
| 33 |
+
use_auth_token=os.environ.get("HF_TOKEN", None),
|
| 34 |
+
)
|
| 35 |
|
| 36 |
logging.info(f"Loaded model {model_name} to {device}")
|
| 37 |
|