Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
π docstrings
Browse filesSigned-off-by: peter szemraj <[email protected]>
app.py
CHANGED
|
@@ -1,3 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import contextlib
|
| 2 |
import logging
|
| 3 |
import os
|
|
@@ -19,7 +25,6 @@ import gradio as gr
|
|
| 19 |
import nltk
|
| 20 |
import torch
|
| 21 |
from cleantext import clean
|
| 22 |
-
from doctr.io import DocumentFile
|
| 23 |
from doctr.models import ocr_predictor
|
| 24 |
|
| 25 |
from pdf2text import convert_PDF_to_Text
|
|
@@ -28,7 +33,7 @@ from utils import load_example_filenames, saves_summary, truncate_word_count
|
|
| 28 |
|
| 29 |
_here = Path(__file__).parent
|
| 30 |
|
| 31 |
-
nltk.download("stopwords"
|
| 32 |
|
| 33 |
|
| 34 |
MODEL_OPTIONS = [
|
|
@@ -37,7 +42,7 @@ MODEL_OPTIONS = [
|
|
| 37 |
"pszemraj/long-t5-tglobal-base-sci-simplify-elife",
|
| 38 |
"pszemraj/long-t5-tglobal-base-16384-booksci-summary-v1",
|
| 39 |
"pszemraj/pegasus-x-large-book-summary",
|
| 40 |
-
]
|
| 41 |
|
| 42 |
|
| 43 |
def predict(
|
|
@@ -46,8 +51,16 @@ def predict(
|
|
| 46 |
token_batch_length: int = 1024,
|
| 47 |
empty_cache: bool = True,
|
| 48 |
**settings,
|
| 49 |
-
):
|
| 50 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
if torch.cuda.is_available() and empty_cache:
|
| 52 |
torch.cuda.empty_cache()
|
| 53 |
|
|
@@ -143,9 +156,11 @@ def proc_submission(
|
|
| 143 |
token_batch_length=token_batch_length,
|
| 144 |
**settings,
|
| 145 |
)
|
| 146 |
-
sum_text = [
|
|
|
|
|
|
|
| 147 |
sum_scores = [
|
| 148 |
-
f" -
|
| 149 |
for i, s in enumerate(_summaries)
|
| 150 |
]
|
| 151 |
|
|
@@ -153,9 +168,9 @@ def proc_submission(
|
|
| 153 |
history["Summary Scores"] = "<br><br>"
|
| 154 |
scores_out = "\n".join(sum_scores)
|
| 155 |
rt = round((time.perf_counter() - st) / 60, 2)
|
| 156 |
-
|
| 157 |
html = ""
|
| 158 |
-
html += f"<p>Runtime: {rt} minutes
|
| 159 |
if msg is not None:
|
| 160 |
html += msg
|
| 161 |
|
|
@@ -170,11 +185,13 @@ def proc_submission(
|
|
| 170 |
def load_single_example_text(
|
| 171 |
example_path: str or Path,
|
| 172 |
max_pages=20,
|
| 173 |
-
):
|
| 174 |
"""
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
| 178 |
"""
|
| 179 |
global name_to_path
|
| 180 |
full_ex_path = name_to_path[example_path]
|
|
@@ -198,30 +215,27 @@ def load_single_example_text(
|
|
| 198 |
return text
|
| 199 |
|
| 200 |
|
| 201 |
-
def load_uploaded_file(file_obj, max_pages=20):
|
| 202 |
"""
|
| 203 |
-
load_uploaded_file -
|
| 204 |
-
|
| 205 |
-
Args:
|
| 206 |
-
file_obj (POTENTIALLY list): Gradio file object inside a list
|
| 207 |
|
| 208 |
-
|
| 209 |
-
|
|
|
|
|
|
|
| 210 |
"""
|
| 211 |
-
|
| 212 |
-
# file_path = Path(file_obj[0].name)
|
| 213 |
-
|
| 214 |
# check if mysterious file object is a list
|
| 215 |
if isinstance(file_obj, list):
|
| 216 |
file_obj = file_obj[0]
|
| 217 |
file_path = Path(file_obj.name)
|
| 218 |
try:
|
|
|
|
| 219 |
if file_path.suffix == ".txt":
|
| 220 |
with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
|
| 221 |
raw_text = f.read()
|
| 222 |
-
text = clean(raw_text, lower=
|
| 223 |
elif file_path.suffix == ".pdf":
|
| 224 |
-
logging.info(f"
|
| 225 |
conversion_stats = convert_PDF_to_Text(
|
| 226 |
file_path,
|
| 227 |
ocr_model=ocr_model,
|
|
@@ -230,11 +244,11 @@ def load_uploaded_file(file_obj, max_pages=20):
|
|
| 230 |
text = conversion_stats["converted_text"]
|
| 231 |
else:
|
| 232 |
logging.error(f"Unknown file type {file_path.suffix}")
|
| 233 |
-
text = "ERROR - check
|
| 234 |
|
| 235 |
return text
|
| 236 |
except Exception as e:
|
| 237 |
-
logging.
|
| 238 |
return "Error: Could not read file. Ensure that it is a valid text file with encoding UTF-8 if text, and a PDF if PDF."
|
| 239 |
|
| 240 |
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
app.py - the main module for the gradio app
|
| 3 |
+
|
| 4 |
+
Usage:
|
| 5 |
+
python app.py
|
| 6 |
+
"""
|
| 7 |
import contextlib
|
| 8 |
import logging
|
| 9 |
import os
|
|
|
|
| 25 |
import nltk
|
| 26 |
import torch
|
| 27 |
from cleantext import clean
|
|
|
|
| 28 |
from doctr.models import ocr_predictor
|
| 29 |
|
| 30 |
from pdf2text import convert_PDF_to_Text
|
|
|
|
| 33 |
|
| 34 |
_here = Path(__file__).parent
|
| 35 |
|
| 36 |
+
nltk.download("stopwords", quiet=True)
|
| 37 |
|
| 38 |
|
| 39 |
MODEL_OPTIONS = [
|
|
|
|
| 42 |
"pszemraj/long-t5-tglobal-base-sci-simplify-elife",
|
| 43 |
"pszemraj/long-t5-tglobal-base-16384-booksci-summary-v1",
|
| 44 |
"pszemraj/pegasus-x-large-book-summary",
|
| 45 |
+
] # models users can choose from
|
| 46 |
|
| 47 |
|
| 48 |
def predict(
|
|
|
|
| 51 |
token_batch_length: int = 1024,
|
| 52 |
empty_cache: bool = True,
|
| 53 |
**settings,
|
| 54 |
+
) -> list:
|
| 55 |
+
"""
|
| 56 |
+
predict - helper fn to support multiple models for summarization at once
|
| 57 |
+
|
| 58 |
+
:param str input_text: the input text to summarize
|
| 59 |
+
:param str model_name: model name to use
|
| 60 |
+
:param int token_batch_length: the length of the token batches to use
|
| 61 |
+
:param bool empty_cache: whether to empty the cache before loading a new= model
|
| 62 |
+
:return: list of dicts with keys "summary" and "score"
|
| 63 |
+
"""
|
| 64 |
if torch.cuda.is_available() and empty_cache:
|
| 65 |
torch.cuda.empty_cache()
|
| 66 |
|
|
|
|
| 156 |
token_batch_length=token_batch_length,
|
| 157 |
**settings,
|
| 158 |
)
|
| 159 |
+
sum_text = [
|
| 160 |
+
f"Batch {i}:\n\t" + s["summary"][0] for i, s in enumerate(_summaries, start=1)
|
| 161 |
+
]
|
| 162 |
sum_scores = [
|
| 163 |
+
f" - Batch Summary {i}: {round(s['summary_score'],4)}"
|
| 164 |
for i, s in enumerate(_summaries)
|
| 165 |
]
|
| 166 |
|
|
|
|
| 168 |
history["Summary Scores"] = "<br><br>"
|
| 169 |
scores_out = "\n".join(sum_scores)
|
| 170 |
rt = round((time.perf_counter() - st) / 60, 2)
|
| 171 |
+
logging.info(f"Runtime: {rt} minutes")
|
| 172 |
html = ""
|
| 173 |
+
html += f"<p>Runtime: {rt} minutes with model: {model_name}</p>"
|
| 174 |
if msg is not None:
|
| 175 |
html += msg
|
| 176 |
|
|
|
|
| 185 |
def load_single_example_text(
|
| 186 |
example_path: str or Path,
|
| 187 |
max_pages=20,
|
| 188 |
+
) -> str:
|
| 189 |
"""
|
| 190 |
+
load_single_example_text - loads a single example text file
|
| 191 |
+
|
| 192 |
+
:param strorPath example_path: name of the example to load
|
| 193 |
+
:param int max_pages: the maximum number of pages to load from a PDF
|
| 194 |
+
:return str: the text of the example
|
| 195 |
"""
|
| 196 |
global name_to_path
|
| 197 |
full_ex_path = name_to_path[example_path]
|
|
|
|
| 215 |
return text
|
| 216 |
|
| 217 |
|
| 218 |
+
def load_uploaded_file(file_obj, max_pages: int = 20, lower: bool = False) -> str:
|
| 219 |
"""
|
| 220 |
+
load_uploaded_file - loads a file uploaded by the user
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
+
:param file_obj (POTENTIALLY list): Gradio file object inside a list
|
| 223 |
+
:param int max_pages: the maximum number of pages to load from a PDF
|
| 224 |
+
:param bool lower: whether to lowercase the text
|
| 225 |
+
:return str: the text of the file
|
| 226 |
"""
|
|
|
|
|
|
|
|
|
|
| 227 |
# check if mysterious file object is a list
|
| 228 |
if isinstance(file_obj, list):
|
| 229 |
file_obj = file_obj[0]
|
| 230 |
file_path = Path(file_obj.name)
|
| 231 |
try:
|
| 232 |
+
logging.info(f"Loading file:\t{file_path}")
|
| 233 |
if file_path.suffix == ".txt":
|
| 234 |
with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
|
| 235 |
raw_text = f.read()
|
| 236 |
+
text = clean(raw_text, lower=lower)
|
| 237 |
elif file_path.suffix == ".pdf":
|
| 238 |
+
logging.info(f"loading as PDF file {file_path}")
|
| 239 |
conversion_stats = convert_PDF_to_Text(
|
| 240 |
file_path,
|
| 241 |
ocr_model=ocr_model,
|
|
|
|
| 244 |
text = conversion_stats["converted_text"]
|
| 245 |
else:
|
| 246 |
logging.error(f"Unknown file type {file_path.suffix}")
|
| 247 |
+
text = "ERROR - check file - unknown file type"
|
| 248 |
|
| 249 |
return text
|
| 250 |
except Exception as e:
|
| 251 |
+
logging.error(f"Trying to load file:\t{file_path},\nerror:\t{e}")
|
| 252 |
return "Error: Could not read file. Ensure that it is a valid text file with encoding UTF-8 if text, and a PDF if PDF."
|
| 253 |
|
| 254 |
|