Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,7 @@
|
|
| 1 |
-
from fastapi import FastAPI, HTTPException
|
| 2 |
-
from pydantic import BaseModel
|
| 3 |
from transformers import AutoTokenizer, AutoModel
|
| 4 |
import torch
|
| 5 |
import os
|
| 6 |
-
|
| 7 |
-
app = FastAPI()
|
| 8 |
|
| 9 |
# Load Hugging Face Token
|
| 10 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
@@ -13,32 +10,35 @@ if not HF_TOKEN:
|
|
| 13 |
|
| 14 |
# Load tokenizer and model
|
| 15 |
tokenizer = AutoTokenizer.from_pretrained("mental/mental-bert-base-uncased", use_auth_token=HF_TOKEN)
|
| 16 |
-
model = AutoModel.from_pretrained("mental/mental-bert-base-uncased", use_auth_token=HF_TOKEN)
|
| 17 |
|
| 18 |
model.eval() # Set model to evaluation mode
|
| 19 |
|
| 20 |
-
# Request body schema
|
| 21 |
-
class TextRequest(BaseModel):
|
| 22 |
-
text: str
|
| 23 |
|
| 24 |
-
|
| 25 |
-
def
|
| 26 |
-
|
| 27 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 28 |
with torch.no_grad():
|
| 29 |
outputs = model(**inputs)
|
| 30 |
-
embedding = outputs.last_hidden_state.mean(dim=1).squeeze()
|
| 31 |
-
return embedding.tolist()
|
| 32 |
-
|
| 33 |
-
# POST endpoint to return embedding
|
| 34 |
-
@app.post("/embed")
|
| 35 |
-
def get_embedding(request: TextRequest):
|
| 36 |
-
text = request.text.strip()
|
| 37 |
-
if not text:
|
| 38 |
-
raise HTTPException(status_code=400, detail="Input text cannot be empty.")
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from transformers import AutoTokenizer, AutoModel
|
| 2 |
import torch
|
| 3 |
import os
|
| 4 |
+
import gradio as gr
|
|
|
|
| 5 |
|
| 6 |
# Load Hugging Face Token
|
| 7 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
| 10 |
|
| 11 |
# Load tokenizer and model
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained("mental/mental-bert-base-uncased", use_auth_token=HF_TOKEN)
|
| 13 |
+
model = AutoModel.from_pretrained("mental/mental-bert-base-uncased", use_auth_token=HF_TOKEN,output_hidden_states=True)
|
| 14 |
|
| 15 |
model.eval() # Set model to evaluation mode
|
| 16 |
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
|
| 19 |
+
def infer(text):
|
| 20 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
|
|
|
| 21 |
with torch.no_grad():
|
| 22 |
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
last_hidden_state = outputs.last_hidden_state # (1, seq_len, hidden_size)
|
| 25 |
+
mask = inputs['attention_mask'].unsqueeze(-1).expand(last_hidden_state.size()).float()
|
| 26 |
+
|
| 27 |
+
masked_embeddings = last_hidden_state * mask
|
| 28 |
+
summed = torch.sum(masked_embeddings, dim=1)
|
| 29 |
+
counts = torch.clamp(mask.sum(dim=1), min=1e-9)
|
| 30 |
+
mean_pooled = summed / counts
|
| 31 |
+
|
| 32 |
+
return mean_pooled.squeeze().tolist()
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# Gradio interface
|
| 36 |
+
iface = gr.Interface(
|
| 37 |
+
fn=infer,
|
| 38 |
+
inputs=[
|
| 39 |
+
gr.Textbox(label="text"),
|
| 40 |
+
],
|
| 41 |
+
outputs="text"
|
| 42 |
+
)
|
| 43 |
+
iface.launch()
|
| 44 |
+
|