Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import json | |
| import math | |
| import os | |
| import traceback | |
| from io import BytesIO | |
| from typing import Any, Dict, List, Optional, Tuple | |
| import re | |
| import time | |
| from threading import Thread | |
| import gradio as gr | |
| import requests | |
| import torch | |
| from PIL import Image | |
| from transformers import ( | |
| Qwen2VLForConditionalGeneration, | |
| Qwen2_5_VLForConditionalGeneration, | |
| AutoModelForImageTextToText, | |
| AutoProcessor, | |
| TextIteratorStreamer, | |
| AutoModel, | |
| AutoTokenizer, | |
| ) | |
| from transformers.image_utils import load_image | |
| # --- Constants and Model Setup --- | |
| MAX_INPUT_TOKEN_LENGTH = 4096 | |
| # Note: The following line correctly falls back to CPU if CUDA is not available. | |
| # Let the environment (e.g., Hugging Face Spaces) determine the device. | |
| # This avoids conflicts with the CUDA environment setup by the platform. | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES")) | |
| print("torch.__version__ =", torch.__version__) | |
| print("torch.version.cuda =", torch.version.cuda) | |
| print("cuda available:", torch.cuda.is_available()) | |
| print("cuda device count:", torch.cuda.device_count()) | |
| if torch.cuda.is_available(): | |
| print("current device:", torch.cuda.current_device()) | |
| print("device name:", torch.cuda.get_device_name(torch.cuda.current_device())) | |
| print("Using device:", device) | |
| # --- Model Loading --- | |
| # --- Prompts for Different Tasks --- | |
| layout_prompt = """Please output the layout information from the image, including each layout element's bbox, its category, and the corresponding text content within the bbox. | |
| 1. Bbox format: [x1, y1, x2, y2] | |
| 2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']. | |
| 3. Text Extraction & Formatting Rules: | |
| - For tables, provide the content in a structured JSON format. | |
| - For all other elements, provide the plain text. | |
| 4. Constraints: | |
| - The output must be the original text from the image. | |
| - All layout elements must be sorted according to human reading order. | |
| 5. Final Output: The entire output must be a single JSON object wrapped in ```json ... ```. | |
| """ | |
| ocr_prompt = "Perform precise OCR on the image. Extract all text content, maintaining the original structure, paragraphs, and tables as formatted markdown." | |
| # --- Model Loading --- | |
| MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-080125" | |
| processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) | |
| model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713" | |
| processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True) | |
| model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_T, trust_remote_code=True, torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| MODEL_ID_C = "nanonets/Nanonets-OCR-s" | |
| processor_c = AutoProcessor.from_pretrained(MODEL_ID_C, trust_remote_code=True) | |
| model_c = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_C, trust_remote_code=True, torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| MODEL_ID_G = "echo840/MonkeyOCR" | |
| SUBFOLDER = "Recognition" | |
| processor_g = AutoProcessor.from_pretrained( | |
| MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER | |
| ) | |
| model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER, torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| MODEL_ID_I = "allenai/olmOCR-7B-0725" | |
| processor_i = AutoProcessor.from_pretrained(MODEL_ID_I, trust_remote_code=True) | |
| model_i = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_I, trust_remote_code=True, torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # --- Utility Functions --- | |
| def layoutjson2md(layout_data: Any) -> str: | |
| """ | |
| FIXED: Converts the structured JSON from Layout Analysis into formatted Markdown. | |
| This version is robust against malformed JSON from the model. | |
| """ | |
| markdown_lines = [] | |
| # If the model wraps the list in a dictionary, find and extract the list. | |
| if isinstance(layout_data, dict): | |
| found_list = None | |
| for value in layout_data.values(): | |
| if isinstance(value, list): | |
| found_list = value | |
| break | |
| if found_list is not None: | |
| layout_data = found_list | |
| else: | |
| return "### Error: Could not find a list of layout items in the JSON object." | |
| if not isinstance(layout_data, list): | |
| return f"### Error: Expected a list of layout items, but received type {type(layout_data).__name__}." | |
| try: | |
| # Filter out any non-dictionary items and sort by reading order. | |
| valid_items = [item for item in layout_data if isinstance(item, dict)] | |
| sorted_items = sorted(valid_items, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0])) | |
| for item in sorted_items: | |
| category = item.get('category', 'Text') # Default to 'Text' if no category | |
| text = item.get('text', '') | |
| if not text: | |
| continue | |
| if category == 'Title': | |
| markdown_lines.append(f"# {text}\n") | |
| elif category == 'Section-header': | |
| markdown_lines.append(f"## {text}\n") | |
| elif category == 'Table': | |
| if isinstance(text, dict) and 'header' in text and 'rows' in text: | |
| header = '| ' + ' | '.join(map(str, text['header'])) + ' |' | |
| separator = '| ' + ' | '.join(['---'] * len(text['header'])) + ' |' | |
| rows = ['| ' + ' | '.join(map(str, row)) + ' |' for row in text['rows']] | |
| markdown_lines.extend([header, separator] + rows) | |
| markdown_lines.append("\n") | |
| else: # Fallback for simple text or malformed tables | |
| markdown_lines.append(f"{text}\n") | |
| else: | |
| markdown_lines.append(f"{text}\n") | |
| except Exception as e: | |
| print(f"Error converting to markdown: {e}") | |
| traceback.print_exc() | |
| return "### Error: An unexpected error occurred while converting JSON to Markdown." | |
| return "\n".join(markdown_lines) | |
| # --- Core Application Logic --- | |
| def process_document_stream(model_name: str, task_choice: str, image: Image.Image, max_new_tokens: int): | |
| """ | |
| Main generator function that handles both OCR and Layout Analysis tasks. | |
| """ | |
| if image is None: | |
| yield "Please upload an image.", "Please upload an image.", None | |
| return | |
| # 1. Select prompt based on user's task choice | |
| text_prompt = ocr_prompt if task_choice == "Content Extraction" else layout_prompt | |
| # 2. Select model and processor | |
| if model_name == "Camel-Doc-OCR-080125": processor, model = processor_m, model_m | |
| elif model_name == "Megalodon-OCR-Sync-0713": processor, model = processor_t, model_t | |
| elif model_name == "Nanonets-OCR-s": processor, model = processor_c, model_c | |
| elif model_name == "MonkeyOCR-Recognition": processor, model = processor_g, model_g | |
| elif model_name == "olmOCR-7B-0725": processor, model = processor_i, model_i | |
| else: | |
| yield "Invalid model selected.", "Invalid model selected.", None | |
| return | |
| # 3. Prepare model inputs and streamer | |
| messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": text_prompt}]}] | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| # 4. Stream raw output to the UI in real-time | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer , "⏳ Processing...", {"status": "streaming"} | |
| # 5. Post-process the final buffer based on the selected task | |
| if task_choice == "Content Extraction": | |
| # For OCR, the buffer is the final result. | |
| yield buffer, buffer, None | |
| else: # Layout Analysis | |
| try: | |
| json_match = re.search(r'```json\s*([\s\S]+?)\s*```', buffer) | |
| if not json_match: | |
| # If no JSON block is found, try to parse the whole buffer as a fallback. | |
| try: | |
| layout_data = json.loads(buffer) | |
| markdown_content = layoutjson2md(layout_data) | |
| yield buffer, markdown_content, layout_data | |
| return | |
| except json.JSONDecodeError: | |
| raise ValueError("JSON object not found in the model's output.") | |
| json_str = json_match.group(1) | |
| layout_data = json.loads(json_str) | |
| markdown_content = layoutjson2md(layout_data) | |
| yield buffer, markdown_content, layout_data | |
| except Exception as e: | |
| error_md = f"❌ **Error:** Failed to parse Layout JSON.\n\n**Details:**\n`{str(e)}`\n\n**Raw Output:**\n```\n{buffer}\n```" | |
| error_json = {"error": "ProcessingError", "details": str(e), "raw_output": buffer} | |
| yield buffer, error_md, error_json | |
| # --- Gradio UI Definition --- | |
| def create_gradio_interface(): | |
| """Builds and returns the Gradio web interface.""" | |
| css = """ | |
| .main-container { max-width: 1400px; margin: 0 auto; } | |
| .process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;} | |
| .process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; } | |
| """ | |
| with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo: | |
| gr.HTML(""" | |
| <div class="title" style="text-align: center"> | |
| <h1>OCR Comparator🥠</h1> | |
| <p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;"> | |
| Advanced Vision-Language Model for Image Content and Layout Extraction | |
| </p> | |
| </div> | |
| """) | |
| with gr.Row(): | |
| # Left Column (Inputs) | |
| with gr.Column(scale=1): | |
| model_choice = gr.Dropdown( | |
| choices=["Camel-Doc-OCR-080125", | |
| "MonkeyOCR-Recognition", | |
| "olmOCR-7B-0725", | |
| "Nanonets-OCR-s", | |
| "Megalodon-OCR-Sync-0713" | |
| ], | |
| label="Select Model", | |
| value="Nanonets-OCR-s" | |
| ) | |
| task_choice = gr.Dropdown( | |
| choices=["Content Extraction", | |
| "Layout Analysis(.json)"], | |
| label="Select Task", value="Content Extraction" | |
| ) | |
| image_input = gr.Image(label="Upload Image", type="pil", sources=['upload']) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| max_new_tokens = gr.Slider(minimum=512, maximum=8192, value=4096, step=256, label="Max New Tokens") | |
| process_btn = gr.Button("🚀 Process Document", variant="primary", elem_classes=["process-button"], size="lg") | |
| clear_btn = gr.Button("🗑️ Clear All", variant="secondary") | |
| # Right Column (Outputs) | |
| with gr.Column(scale=2): | |
| with gr.Tabs() as tabs: | |
| with gr.Tab("📝 Extracted Content"): | |
| raw_output_stream = gr.Textbox(label="Raw Model Output Stream", interactive=False, lines=13, show_copy_button=True) | |
| with gr.Row(): | |
| examples = gr.Examples( | |
| examples=["examples/1.png", "examples/2.png", "examples/3.png", "examples/4.png", "examples/5.png"], | |
| inputs=image_input, | |
| label="Examples" | |
| ) | |
| gr.Markdown("[Report-Bug💻](https://huggingface.co/spaces/prithivMLmods/OCR-Comparator/discussions)") | |
| with gr.Tab("📰 README.md"): | |
| with gr.Accordion("(Formatted Result)", open=True): | |
| markdown_output = gr.Markdown(label="Formatted Markdown") | |
| with gr.Tab("📋 Layout Analysis Results"): | |
| json_output = gr.JSON(label="Structured Layout Data (JSON)") | |
| # Event Handlers | |
| def clear_all_outputs(): | |
| return None, "Raw output will appear here.", "Formatted results will appear here.", None | |
| process_btn.click( | |
| fn=process_document_stream, | |
| inputs=[model_choice, | |
| task_choice, | |
| image_input, | |
| max_new_tokens], | |
| outputs=[raw_output_stream, | |
| markdown_output, | |
| json_output] | |
| ) | |
| clear_btn.click( | |
| clear_all_outputs, | |
| outputs=[image_input, | |
| raw_output_stream, | |
| markdown_output, | |
| json_output] | |
| ) | |
| return demo | |
| if __name__ == "__main__": | |
| demo = create_gradio_interface() | |
| demo.queue(max_size=50).launch(share=True, ssr_mode=False, show_error=True) |