Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import json | |
| import math | |
| import os | |
| import traceback | |
| from io import BytesIO | |
| from typing import Any, Dict, List, Optional, Tuple | |
| import re | |
| import time | |
| from threading import Thread | |
| from io import BytesIO | |
| import uuid | |
| import tempfile | |
| import gradio as gr | |
| import requests | |
| import torch | |
| from PIL import Image | |
| import fitz | |
| import numpy as np | |
| import torchvision.transforms as T | |
| from torchvision.transforms.functional import InterpolationMode | |
| from transformers import ( | |
| Qwen2_5_VLForConditionalGeneration, | |
| Qwen2VLForConditionalGeneration, | |
| AutoModelForCausalLM, | |
| AutoModelForVision2Seq, | |
| AutoModelForImageTextToText, | |
| AutoModel, | |
| AutoProcessor, | |
| TextIteratorStreamer, | |
| AutoTokenizer, | |
| LlavaOnevisionForConditionalGeneration, | |
| LlavaOnevisionProcessor, | |
| ) | |
| from transformers.image_utils import load_image as hf_load_image | |
| from reportlab.lib.pagesizes import A4 | |
| from reportlab.lib.styles import getSampleStyleSheet | |
| from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer | |
| from reportlab.lib.units import inch | |
| # --- Constants and Model Setup --- | |
| MAX_INPUT_TOKEN_LENGTH = 4096 | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES")) | |
| print("torch.__version__ =", torch.__version__) | |
| print("torch.version.cuda =", torch.version.cuda) | |
| print("cuda available:", torch.cuda.is_available()) | |
| print("cuda device count:", torch.cuda.device_count()) | |
| if torch.cuda.is_available(): | |
| print("current device:", torch.cuda.current_device()) | |
| print("device name:", torch.cuda.get_device_name(torch.cuda.current_device())) | |
| print("Using device:", device) | |
| # --- InternVL3_5-2B-MPO Preprocessing Functions --- | |
| IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
| IMAGENET_STD = (0.229, 0.224, 0.225) | |
| def build_transform(input_size): | |
| MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | |
| transform = T.Compose([ | |
| T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
| T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
| T.ToTensor(), | |
| T.Normalize(mean=MEAN, std=STD) | |
| ]) | |
| return transform | |
| def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
| best_ratio_diff = float('inf') | |
| best_ratio = (1, 1) | |
| area = width * height | |
| for ratio in target_ratios: | |
| target_aspect_ratio = ratio[0] / ratio[1] | |
| ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
| if ratio_diff < best_ratio_diff: | |
| best_ratio_diff = ratio_diff | |
| best_ratio = ratio | |
| elif ratio_diff == best_ratio_diff: | |
| if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
| best_ratio = ratio | |
| return best_ratio | |
| def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): | |
| orig_width, orig_height = image.size | |
| aspect_ratio = orig_width / orig_height | |
| target_ratios = set( | |
| (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | |
| i * j <= max_num and i * j >= min_num) | |
| target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
| target_aspect_ratio = find_closest_aspect_ratio( | |
| aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
| target_width = image_size * target_aspect_ratio[0] | |
| target_height = image_size * target_aspect_ratio[1] | |
| blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
| resized_img = image.resize((target_width, target_height)) | |
| processed_images = [] | |
| for i in range(blocks): | |
| box = ( | |
| (i % (target_width // image_size)) * image_size, | |
| (i // (target_width // image_size)) * image_size, | |
| ((i % (target_width // image_size)) + 1) * image_size, | |
| ((i // (target_width // image_size)) + 1) * image_size | |
| ) | |
| split_img = resized_img.crop(box) | |
| processed_images.append(split_img) | |
| assert len(processed_images) == blocks | |
| if use_thumbnail and len(processed_images) != 1: | |
| thumbnail_img = image.resize((image_size, image_size)) | |
| processed_images.append(thumbnail_img) | |
| return processed_images | |
| def load_image_internvl(image, input_size=448, max_num=12): | |
| transform = build_transform(input_size=input_size) | |
| images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
| pixel_values = [transform(img) for img in images] | |
| pixel_values = torch.stack(pixel_values) | |
| return pixel_values | |
| # --- Model Loading --- | |
| MODEL_ID_M = "LiquidAI/LFM2-VL-450M" | |
| processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) | |
| model_m = AutoModelForImageTextToText.from_pretrained( | |
| MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| MODEL_ID_T = "LiquidAI/LFM2-VL-1.6B" | |
| processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True) | |
| model_t = AutoModelForImageTextToText.from_pretrained( | |
| MODEL_ID_T, trust_remote_code=True, torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| MODEL_ID_C = "HuggingFaceTB/SmolVLM-Instruct-250M" | |
| processor_c = AutoProcessor.from_pretrained(MODEL_ID_C, trust_remote_code=True) | |
| model_c = AutoModelForVision2Seq.from_pretrained( | |
| MODEL_ID_C, trust_remote_code=True, torch_dtype=torch.float16, _attn_implementation="flash_attention_2" | |
| ).to(device).eval() | |
| MODEL_ID_G = "echo840/MonkeyOCR-pro-1.2B" | |
| SUBFOLDER = "Recognition" | |
| processor_g = AutoProcessor.from_pretrained( | |
| MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER | |
| ) | |
| model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER, torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| MODEL_ID_I = "UCSC-VLAA/VLAA-Thinker-Qwen2VL-2B" | |
| processor_i = AutoProcessor.from_pretrained(MODEL_ID_I, trust_remote_code=True) | |
| model_i = Qwen2VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_I, trust_remote_code=True, torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| MODEL_ID_A = "nanonets/Nanonets-OCR-s" | |
| processor_a = AutoProcessor.from_pretrained(MODEL_ID_A, trust_remote_code=True) | |
| model_a = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_A, trust_remote_code=True, torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| MODEL_ID_X = "prithivMLmods/Megalodon-OCR-Sync-0713" | |
| processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True) | |
| model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_X, trust_remote_code=True, torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # --- Moondream2 Model Loading --- | |
| MODEL_ID_MD = "vikhyatk/moondream2" | |
| REVISION_MD = "2025-06-21" | |
| moondream = AutoModelForCausalLM.from_pretrained( | |
| MODEL_ID_MD, | |
| revision=REVISION_MD, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16, | |
| device_map={"": "cuda"}, | |
| ) | |
| tokenizer_md = AutoTokenizer.from_pretrained(MODEL_ID_MD, revision=REVISION_MD) | |
| # --- Qwen2.5-VL-3B-Abliterated-Caption-it --- | |
| MODEL_ID_N = "prithivMLmods/Qwen2.5-VL-3B-Abliterated-Caption-it" | |
| processor_n = AutoProcessor.from_pretrained(MODEL_ID_N, trust_remote_code=True) | |
| model_n = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_N, trust_remote_code=True, torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # --- LMM-R1-MGT-PerceReason --- | |
| MODEL_ID_F = "VLM-Reasoner/LMM-R1-MGT-PerceReason" | |
| processor_f = AutoProcessor.from_pretrained(MODEL_ID_F, trust_remote_code=True) | |
| model_f = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_F, trust_remote_code=True, torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # TencentBAC/TBAC-VLR1-3B | |
| MODEL_ID_G = "TencentBAC/TBAC-VLR1-3B" | |
| processor_g = AutoProcessor.from_pretrained(MODEL_ID_G, trust_remote_code=True) | |
| model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_G, trust_remote_code=True, torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # OCRFlux-3B | |
| MODEL_ID_V = "ChatDOC/OCRFlux-3B" | |
| processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True) | |
| model_v = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_V, trust_remote_code=True, torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| MODEL_ID_O = "HuggingFaceTB/SmolVLM-500M-Instruct" | |
| processor_o = AutoProcessor.from_pretrained(MODEL_ID_O, trust_remote_code=True) | |
| model_o = AutoModelForVision2Seq.from_pretrained( | |
| MODEL_ID_O, trust_remote_code=True, torch_dtype=torch.float16, _attn_implementation="flash_attention_2" | |
| ).to(device).eval() | |
| # --- New Model: llava-onevision --- | |
| MODEL_ID_LO = "llava-hf/llava-onevision-qwen2-0.5b-ov-hf" | |
| processor_lo = LlavaOnevisionProcessor.from_pretrained(MODEL_ID_LO) | |
| model_lo = LlavaOnevisionForConditionalGeneration.from_pretrained( | |
| MODEL_ID_LO, | |
| torch_dtype=torch.float16 | |
| ).to(device).eval() | |
| # OpenGVLab/InternVL3_5-2B-MPO --- | |
| MODEL_ID_IV = 'OpenGVLab/InternVL3_5-2B-MPO' | |
| model_iv = AutoModel.from_pretrained( | |
| MODEL_ID_IV, | |
| torch_dtype=torch.bfloat16, | |
| trust_remote_code=True, | |
| device_map="auto").eval() | |
| tokenizer_iv = AutoTokenizer.from_pretrained(MODEL_ID_IV, trust_remote_code=True, use_fast=False) | |
| # --- PDF Generation and Preview Utility Function --- | |
| def generate_and_preview_pdf(image: Image.Image, text_content: str, font_size: int, line_spacing: float, alignment: str, image_size: str): | |
| """ | |
| Generates a PDF, saves it, and then creates image previews of its pages. | |
| Returns the path to the PDF and a list of paths to the preview images. | |
| """ | |
| if image is None or not text_content or not text_content.strip(): | |
| raise gr.Error("Cannot generate PDF. Image or text content is missing.") | |
| # --- 1. Generate the PDF --- | |
| temp_dir = tempfile.gettempdir() | |
| pdf_filename = os.path.join(temp_dir, f"output_{uuid.uuid4()}.pdf") | |
| doc = SimpleDocTemplate( | |
| pdf_filename, | |
| pagesize=A4, | |
| rightMargin=inch, leftMargin=inch, | |
| topMargin=inch, bottomMargin=inch | |
| ) | |
| styles = getSampleStyleSheet() | |
| style_normal = styles["Normal"] | |
| style_normal.fontSize = int(font_size) | |
| style_normal.leading = int(font_size) * line_spacing | |
| style_normal.alignment = {"Left": 0, "Center": 1, "Right": 2, "Justified": 4}[alignment] | |
| story = [] | |
| img_buffer = BytesIO() | |
| image.save(img_buffer, format='PNG') | |
| img_buffer.seek(0) | |
| page_width, _ = A4 | |
| available_width = page_width - 2 * inch | |
| image_widths = { | |
| "Small": available_width * 0.3, | |
| "Medium": available_width * 0.6, | |
| "Large": available_width * 0.9, | |
| } | |
| img_width = image_widths[image_size] | |
| img = RLImage(img_buffer, width=img_width, height=image.height * (img_width / image.width)) | |
| story.append(img) | |
| story.append(Spacer(1, 12)) | |
| cleaned_text = re.sub(r'#+\s*', '', text_content).replace("*", "") | |
| text_paragraphs = cleaned_text.split('\n') | |
| for para in text_paragraphs: | |
| if para.strip(): | |
| story.append(Paragraph(para, style_normal)) | |
| doc.build(story) | |
| # --- 2. Render PDF pages as images for preview --- | |
| preview_images = [] | |
| try: | |
| pdf_doc = fitz.open(pdf_filename) | |
| for page_num in range(len(pdf_doc)): | |
| page = pdf_doc.load_page(page_num) | |
| pix = page.get_pixmap(dpi=150) | |
| preview_img_path = os.path.join(temp_dir, f"preview_{uuid.uuid4()}_p{page_num}.png") | |
| pix.save(preview_img_path) | |
| preview_images.append(preview_img_path) | |
| pdf_doc.close() | |
| except Exception as e: | |
| print(f"Error generating PDF preview: {e}") | |
| return pdf_filename, preview_images | |
| # --- Core Application Logic --- | |
| def process_document_stream( | |
| model_name: str, | |
| image: Image.Image, | |
| prompt_input: str, | |
| max_new_tokens: int, | |
| temperature: float, | |
| top_p: float, | |
| top_k: int, | |
| repetition_penalty: float | |
| ): | |
| """ | |
| Main generator function that handles model inference tasks with advanced generation parameters. | |
| """ | |
| if image is None: | |
| yield "Please upload an image.", "" | |
| return | |
| if not prompt_input or not prompt_input.strip(): | |
| yield "Please enter a prompt.", "" | |
| return | |
| # --- Special Handling for Moondream2 --- | |
| if model_name == "Moondream2(vision)": | |
| image_embeds = moondream.encode_image(image) | |
| answer = moondream.answer_question( | |
| image_embeds=image_embeds, | |
| question=prompt_input, | |
| tokenizer=tokenizer_md | |
| ) | |
| yield answer, answer | |
| return | |
| # --- Special Handling for InternVL --- | |
| if model_name == "OpenGVLab/InternVL3_5-2B-MPO": | |
| pixel_values = load_image_internvl(image, max_num=12).to(torch.bfloat16).to(device) | |
| generation_config = dict( | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True if temperature > 0 else False, | |
| temperature=temperature, | |
| top_p=top_p, | |
| top_k=top_k, | |
| repetition_penalty=repetition_penalty, | |
| ) | |
| question = f"<image>\n{prompt_input}" | |
| response = model_iv.chat(tokenizer_iv, pixel_values, question, generation_config) | |
| yield response, response | |
| return | |
| processor = None | |
| model = None | |
| # --- Special Handling for Llava-OneVision --- | |
| if model_name == "llava-onevision-qwen2-0.5b-ov-hf(mini)": | |
| processor, model = processor_lo, model_lo | |
| prompt = f"<|im_start|>user <image>\n{prompt_input}<|im_end|><|im_start|>assistant" | |
| inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch.float16) | |
| # --- Generic Handling for all other models --- | |
| else: | |
| if model_name == "LFM2-VL-450M(fast)": processor, model = processor_m, model_m | |
| elif model_name == "LFM2-VL-1.6B(fast)": processor, model = processor_t, model_t | |
| elif model_name == "SmolVLM-Instruct-250M(smol)": processor, model = processor_c, model_c | |
| elif model_name == "MonkeyOCR-pro-1.2B(ocr)": processor, model = processor_g, model_g | |
| elif model_name == "VLAA-Thinker-Qwen2VL-2B(reason)": processor, model = processor_i, model_i | |
| elif model_name == "Nanonets-OCR-s(ocr)": processor, model = processor_a, model_a | |
| elif model_name == "Megalodon-OCR-Sync-0713(ocr)": processor, model = processor_x, model_x | |
| elif model_name == "Qwen2.5-VL-3B-Abliterated-Caption-it(caption)": processor, model = processor_n, model_n | |
| elif model_name == "LMM-R1-MGT-PerceReason(reason)": processor, model = processor_f, model_f | |
| elif model_name == "TBAC-VLR1-3B(open-r1)": processor, model = processor_g, model_g | |
| elif model_name == "OCRFlux-3B(ocr)": processor, model = processor_v, model_v | |
| elif model_name == "SmolVLM-500M-Instruct(smol)": processor, model = processor_o, model_o | |
| else: | |
| yield "Invalid model selected.", "" | |
| return | |
| messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt_input}]}] | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device) | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| **inputs, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty, | |
| "do_sample": True | |
| } | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer , buffer | |
| yield buffer, buffer | |
| # --- Gradio UI Definition --- | |
| def create_gradio_interface(): | |
| """Builds and returns the Gradio web interface.""" | |
| css = """ | |
| .main-container { max-width: 1400px; margin: 0 auto; } | |
| .process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;} | |
| .process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; } | |
| #gallery { min-height: 400px; } | |
| """ | |
| with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo: | |
| gr.HTML(""" | |
| <div class="title" style="text-align: center"> | |
| <h1>Tiny VLMs Lab🧪</h1> | |
| <p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;"> | |
| Tiny VLMs for Image Content Extraction and Understanding | |
| </p> | |
| </div> | |
| """) | |
| with gr.Row(): | |
| # Left Column (Inputs) | |
| with gr.Column(scale=1): | |
| model_choice = gr.Dropdown( | |
| choices=["LFM2-VL-450M(fast)", "LFM2-VL-1.6B(fast)", "SmolVLM-Instruct-250M(smol)", "Moondream2(vision)", | |
| "OpenGVLab/InternVL3_5-2B-MPO", "Megalodon-OCR-Sync-0713(ocr)", | |
| "VLAA-Thinker-Qwen2VL-2B(reason)", "MonkeyOCR-pro-1.2B(ocr)", | |
| "Qwen2.5-VL-3B-Abliterated-Caption-it(caption)", "Nanonets-OCR-s(ocr)", | |
| "LMM-R1-MGT-PerceReason(reason)", "OCRFlux-3B(ocr)", "TBAC-VLR1-3B(open-r1)", | |
| "SmolVLM-500M-Instruct(smol)", "llava-onevision-qwen2-0.5b-ov-hf(mini)"], | |
| label="Select Model", value= "LFM2-VL-450M(fast)" | |
| ) | |
| prompt_input = gr.Textbox(label="Query Input", placeholder="✦︎ Enter the prompt") | |
| image_input = gr.Image(label="Upload Image", type="pil", sources=['upload']) | |
| with gr.Accordion("Advanced Settings (PDF)", open=False): | |
| max_new_tokens = gr.Slider(minimum=512, maximum=8192, value=2048, step=256, label="Max New Tokens") | |
| temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) | |
| top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
| top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) | |
| repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) | |
| gr.Markdown("### PDF Export Settings") | |
| font_size = gr.Dropdown(choices=["8", "10", "12", "14", "16", "18"], value="12", label="Font Size") | |
| line_spacing = gr.Dropdown(choices=[1.0, 1.15, 1.5, 2.0], value=1.15, label="Line Spacing") | |
| alignment = gr.Dropdown(choices=["Left", "Center", "Right", "Justified"], value="Justified", label="Text Alignment") | |
| image_size = gr.Dropdown(choices=["Small", "Medium", "Large"], value="Medium", label="Image Size in PDF") | |
| process_btn = gr.Button("🚀 Process Image", variant="primary", elem_classes=["process-button"], size="lg") | |
| clear_btn = gr.Button("🗑️ Clear All", variant="secondary") | |
| # Right Column (Outputs) | |
| with gr.Column(scale=2): | |
| with gr.Tabs() as tabs: | |
| with gr.Tab("📝 Extracted Content"): | |
| raw_output_stream = gr.Textbox(label="Raw Model Output Stream", interactive=False, lines=15, show_copy_button=True) | |
| with gr.Row(): | |
| examples = gr.Examples( | |
| examples=["examples/1.png", "examples/2.png", "examples/3.png", | |
| "examples/4.png", "examples/5.png", "examples/6.png"], | |
| inputs=image_input, label="Examples" | |
| ) | |
| gr.Markdown("[Report-Bug💻](https://huggingface.co/spaces/prithivMLmods/Tiny-VLMs-Lab/discussions) | [prithivMLmods🤗](https://huggingface.co/prithivMLmods)") | |
| with gr.Tab("📰 README.md"): | |
| with gr.Accordion("(Result.md)", open=True): | |
| markdown_output = gr.Markdown() | |
| with gr.Tab("📋 PDF Preview"): | |
| generate_pdf_btn = gr.Button("📄 Generate PDF & Render", variant="primary") | |
| pdf_output_file = gr.File(label="Download Generated PDF", interactive=False) | |
| pdf_preview_gallery = gr.Gallery(label="PDF Page Preview", show_label=True, elem_id="gallery", columns=2, object_fit="contain", height="auto") | |
| # Event Handlers | |
| def clear_all_outputs(): | |
| return None, "", "Raw output will appear here.", "", None, None | |
| process_btn.click( | |
| fn=process_document_stream, | |
| inputs=[model_choice, image_input, prompt_input, max_new_tokens, temperature, top_p, top_k, repetition_penalty], | |
| outputs=[raw_output_stream, markdown_output] | |
| ) | |
| generate_pdf_btn.click( | |
| fn=generate_and_preview_pdf, | |
| inputs=[image_input, raw_output_stream, font_size, line_spacing, alignment, image_size], | |
| outputs=[pdf_output_file, pdf_preview_gallery] | |
| ) | |
| clear_btn.click( | |
| clear_all_outputs, | |
| outputs=[image_input, prompt_input, raw_output_stream, markdown_output, pdf_output_file, pdf_preview_gallery] | |
| ) | |
| return demo | |
| if __name__ == "__main__": | |
| demo = create_gradio_interface() | |
| demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True) |