Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,11 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from transformers.image_utils import load_image
|
| 4 |
from threading import Thread
|
| 5 |
import time
|
|
@@ -9,6 +15,12 @@ import cv2
|
|
| 9 |
import numpy as np
|
| 10 |
from PIL import Image
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
def progress_bar_html(label: str) -> str:
|
| 13 |
"""
|
| 14 |
Returns an HTML snippet for a thin progress bar with a label.
|
|
@@ -29,6 +41,9 @@ def progress_bar_html(label: str) -> str:
|
|
| 29 |
</style>
|
| 30 |
'''
|
| 31 |
|
|
|
|
|
|
|
|
|
|
| 32 |
def downsample_video(video_path):
|
| 33 |
"""
|
| 34 |
Downsamples the video to 10 evenly spaced frames.
|
|
@@ -54,19 +69,40 @@ def downsample_video(video_path):
|
|
| 54 |
vidcap.release()
|
| 55 |
return frames
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
| 61 |
trust_remote_code=True,
|
| 62 |
torch_dtype=torch.bfloat16
|
| 63 |
).to("cuda").eval()
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
@spaces.GPU
|
| 66 |
def model_inference(input_dict, history):
|
| 67 |
text = input_dict["text"]
|
| 68 |
-
files = input_dict
|
| 69 |
|
|
|
|
|
|
|
|
|
|
| 70 |
if text.strip().lower().startswith("@video-infer"):
|
| 71 |
# Remove the tag from the query.
|
| 72 |
text = text[len("@video-infer"):].strip()
|
|
@@ -103,7 +139,7 @@ def model_inference(input_dict, history):
|
|
| 103 |
# Set up streaming generation.
|
| 104 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 105 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
| 106 |
-
thread = Thread(target=
|
| 107 |
thread.start()
|
| 108 |
buffer = ""
|
| 109 |
yield progress_bar_html("Processing video with Qwen2.5VL Model")
|
|
@@ -113,6 +149,46 @@ def model_inference(input_dict, history):
|
|
| 113 |
yield buffer
|
| 114 |
return
|
| 115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
if len(files) > 1:
|
| 117 |
images = [load_image(image) for image in files]
|
| 118 |
elif len(files) == 1:
|
|
@@ -120,9 +196,6 @@ def model_inference(input_dict, history):
|
|
| 120 |
else:
|
| 121 |
images = []
|
| 122 |
|
| 123 |
-
if text == "" and not images:
|
| 124 |
-
gr.Error("Please input a query and optionally image(s).")
|
| 125 |
-
return
|
| 126 |
if text == "" and images:
|
| 127 |
gr.Error("Please input a text query along with the image(s).")
|
| 128 |
return
|
|
@@ -145,7 +218,7 @@ def model_inference(input_dict, history):
|
|
| 145 |
).to("cuda")
|
| 146 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 147 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
| 148 |
-
thread = Thread(target=
|
| 149 |
thread.start()
|
| 150 |
buffer = ""
|
| 151 |
yield progress_bar_html("Processing with Qwen2.5VL Model")
|
|
@@ -154,11 +227,15 @@ def model_inference(input_dict, history):
|
|
| 154 |
time.sleep(0.01)
|
| 155 |
yield buffer
|
| 156 |
|
|
|
|
|
|
|
|
|
|
| 157 |
examples = [
|
| 158 |
[{"text": "Describe the Image?", "files": ["example_images/document.jpg"]}],
|
|
|
|
| 159 |
[{"text": "@video-infer Explain the content of the Advertisement", "files": ["example_images/videoplayback.mp4"]}],
|
| 160 |
[{"text": "@video-infer Explain the content of the video in detail", "files": ["example_images/breakfast.mp4"]}],
|
| 161 |
-
|
| 162 |
]
|
| 163 |
|
| 164 |
demo = gr.ChatInterface(
|
|
@@ -172,4 +249,5 @@ demo = gr.ChatInterface(
|
|
| 172 |
cache_examples=False,
|
| 173 |
)
|
| 174 |
|
| 175 |
-
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import (
|
| 3 |
+
AutoProcessor,
|
| 4 |
+
Qwen2_5_VLForConditionalGeneration,
|
| 5 |
+
TextIteratorStreamer,
|
| 6 |
+
AutoModelForCausalLM,
|
| 7 |
+
AutoTokenizer,
|
| 8 |
+
)
|
| 9 |
from transformers.image_utils import load_image
|
| 10 |
from threading import Thread
|
| 11 |
import time
|
|
|
|
| 15 |
import numpy as np
|
| 16 |
from PIL import Image
|
| 17 |
|
| 18 |
+
# A constant for token length limit
|
| 19 |
+
MAX_INPUT_TOKEN_LENGTH = 4096
|
| 20 |
+
|
| 21 |
+
# -----------------------
|
| 22 |
+
# Progress Bar Helper
|
| 23 |
+
# -----------------------
|
| 24 |
def progress_bar_html(label: str) -> str:
|
| 25 |
"""
|
| 26 |
Returns an HTML snippet for a thin progress bar with a label.
|
|
|
|
| 41 |
</style>
|
| 42 |
'''
|
| 43 |
|
| 44 |
+
# -----------------------
|
| 45 |
+
# Video Downsampling Helper
|
| 46 |
+
# -----------------------
|
| 47 |
def downsample_video(video_path):
|
| 48 |
"""
|
| 49 |
Downsamples the video to 10 evenly spaced frames.
|
|
|
|
| 69 |
vidcap.release()
|
| 70 |
return frames
|
| 71 |
|
| 72 |
+
# -----------------------
|
| 73 |
+
# Qwen2.5-VL Multimodal Setup
|
| 74 |
+
# -----------------------
|
| 75 |
+
MODEL_ID_QWEN = "Qwen/Qwen2.5-VL-7B-Instruct" # Alternatively: "Qwen/Qwen2.5-VL-3B-Instruct"
|
| 76 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID_QWEN, trust_remote_code=True)
|
| 77 |
+
qwen_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 78 |
+
MODEL_ID_QWEN,
|
| 79 |
trust_remote_code=True,
|
| 80 |
torch_dtype=torch.bfloat16
|
| 81 |
).to("cuda").eval()
|
| 82 |
|
| 83 |
+
# -----------------------
|
| 84 |
+
# DeepHermes Text Generation Setup
|
| 85 |
+
# -----------------------
|
| 86 |
+
text_model_id = "prithivMLmods/DeepHermes-3-Llama-3-3B-Preview-abliterated"
|
| 87 |
+
text_tokenizer = AutoTokenizer.from_pretrained(text_model_id)
|
| 88 |
+
text_model = AutoModelForCausalLM.from_pretrained(
|
| 89 |
+
text_model_id,
|
| 90 |
+
device_map="auto",
|
| 91 |
+
torch_dtype=torch.bfloat16,
|
| 92 |
+
)
|
| 93 |
+
text_model.eval()
|
| 94 |
+
|
| 95 |
+
# -----------------------
|
| 96 |
+
# Main Inference Function
|
| 97 |
+
# -----------------------
|
| 98 |
@spaces.GPU
|
| 99 |
def model_inference(input_dict, history):
|
| 100 |
text = input_dict["text"]
|
| 101 |
+
files = input_dict.get("files", [])
|
| 102 |
|
| 103 |
+
# -----------------------
|
| 104 |
+
# Video Inference Branch
|
| 105 |
+
# -----------------------
|
| 106 |
if text.strip().lower().startswith("@video-infer"):
|
| 107 |
# Remove the tag from the query.
|
| 108 |
text = text[len("@video-infer"):].strip()
|
|
|
|
| 139 |
# Set up streaming generation.
|
| 140 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 141 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
| 142 |
+
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
|
| 143 |
thread.start()
|
| 144 |
buffer = ""
|
| 145 |
yield progress_bar_html("Processing video with Qwen2.5VL Model")
|
|
|
|
| 149 |
yield buffer
|
| 150 |
return
|
| 151 |
|
| 152 |
+
# -----------------------
|
| 153 |
+
# Text-Only Inference Branch (using DeepHermes text generation)
|
| 154 |
+
# -----------------------
|
| 155 |
+
if not files:
|
| 156 |
+
# Prepare a simple conversation for text-only input.
|
| 157 |
+
conversation = [{"role": "user", "content": text}]
|
| 158 |
+
# Here we use the text tokenizer’s chat template method.
|
| 159 |
+
input_ids = text_tokenizer.apply_chat_template(
|
| 160 |
+
conversation, add_generation_prompt=True, return_tensors="pt"
|
| 161 |
+
)
|
| 162 |
+
# Trim if necessary.
|
| 163 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 164 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 165 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 166 |
+
input_ids = input_ids.to(text_model.device)
|
| 167 |
+
streamer = TextIteratorStreamer(text_tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 168 |
+
generation_kwargs = {
|
| 169 |
+
"input_ids": input_ids,
|
| 170 |
+
"streamer": streamer,
|
| 171 |
+
"max_new_tokens": 1024,
|
| 172 |
+
"do_sample": True,
|
| 173 |
+
"top_p": 0.9,
|
| 174 |
+
"top_k": 50,
|
| 175 |
+
"temperature": 0.6,
|
| 176 |
+
"num_beams": 1,
|
| 177 |
+
"repetition_penalty": 1.2,
|
| 178 |
+
}
|
| 179 |
+
thread = Thread(target=text_model.generate, kwargs=generation_kwargs)
|
| 180 |
+
thread.start()
|
| 181 |
+
buffer = ""
|
| 182 |
+
yield progress_bar_html("Processing with DeepHermes Text Generation Model")
|
| 183 |
+
for new_text in streamer:
|
| 184 |
+
buffer += new_text
|
| 185 |
+
time.sleep(0.01)
|
| 186 |
+
yield buffer
|
| 187 |
+
return
|
| 188 |
+
|
| 189 |
+
# -----------------------
|
| 190 |
+
# Multimodal (Image) Inference Branch with Qwen2.5-VL
|
| 191 |
+
# -----------------------
|
| 192 |
if len(files) > 1:
|
| 193 |
images = [load_image(image) for image in files]
|
| 194 |
elif len(files) == 1:
|
|
|
|
| 196 |
else:
|
| 197 |
images = []
|
| 198 |
|
|
|
|
|
|
|
|
|
|
| 199 |
if text == "" and images:
|
| 200 |
gr.Error("Please input a text query along with the image(s).")
|
| 201 |
return
|
|
|
|
| 218 |
).to("cuda")
|
| 219 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 220 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
| 221 |
+
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
|
| 222 |
thread.start()
|
| 223 |
buffer = ""
|
| 224 |
yield progress_bar_html("Processing with Qwen2.5VL Model")
|
|
|
|
| 227 |
time.sleep(0.01)
|
| 228 |
yield buffer
|
| 229 |
|
| 230 |
+
# -----------------------
|
| 231 |
+
# Gradio Chat Interface
|
| 232 |
+
# -----------------------
|
| 233 |
examples = [
|
| 234 |
[{"text": "Describe the Image?", "files": ["example_images/document.jpg"]}],
|
| 235 |
+
[{"text": "Tell me a story about a brave knight in a faraway kingdom."}],
|
| 236 |
[{"text": "@video-infer Explain the content of the Advertisement", "files": ["example_images/videoplayback.mp4"]}],
|
| 237 |
[{"text": "@video-infer Explain the content of the video in detail", "files": ["example_images/breakfast.mp4"]}],
|
| 238 |
+
|
| 239 |
]
|
| 240 |
|
| 241 |
demo = gr.ChatInterface(
|
|
|
|
| 249 |
cache_examples=False,
|
| 250 |
)
|
| 251 |
|
| 252 |
+
if __name__ == "__main__":
|
| 253 |
+
demo.launch(debug=True)
|