Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,98 +1,98 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
|
| 3 |
-
from transformers.image_utils import load_image
|
| 4 |
-
from threading import Thread
|
| 5 |
-
import time
|
| 6 |
-
import torch
|
| 7 |
-
import spaces
|
| 8 |
-
|
| 9 |
-
MODEL_ID = "Qwen/Qwen2.5-VL-3B-Instruct"
|
| 10 |
-
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 11 |
-
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 12 |
-
MODEL_ID,
|
| 13 |
-
trust_remote_code=True,
|
| 14 |
-
torch_dtype=torch.bfloat16
|
| 15 |
-
).to("cuda").eval()
|
| 16 |
-
|
| 17 |
-
@spaces.GPU
|
| 18 |
-
def model_inference(input_dict, history):
|
| 19 |
-
text = input_dict["text"]
|
| 20 |
-
files = input_dict["files"]
|
| 21 |
-
|
| 22 |
-
# Load images if provided
|
| 23 |
-
if len(files) > 1:
|
| 24 |
-
images = [load_image(image) for image in files]
|
| 25 |
-
elif len(files) == 1:
|
| 26 |
-
images = [load_image(files[0])]
|
| 27 |
-
else:
|
| 28 |
-
images = []
|
| 29 |
-
|
| 30 |
-
# Validate input
|
| 31 |
-
if text == "" and not images:
|
| 32 |
-
gr.Error("Please input a query and optionally image(s).")
|
| 33 |
-
return
|
| 34 |
-
if text == "" and images:
|
| 35 |
-
gr.Error("Please input a text query along with the image(s).")
|
| 36 |
-
return
|
| 37 |
-
|
| 38 |
-
# Prepare messages for the model
|
| 39 |
-
messages = [
|
| 40 |
-
{
|
| 41 |
-
"role": "user",
|
| 42 |
-
"content": [
|
| 43 |
-
*[{"type": "image", "image": image} for image in images],
|
| 44 |
-
{"type": "text", "text": text},
|
| 45 |
-
],
|
| 46 |
-
}
|
| 47 |
-
]
|
| 48 |
-
|
| 49 |
-
# Apply chat template and process inputs
|
| 50 |
-
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 51 |
-
inputs = processor(
|
| 52 |
-
text=[prompt],
|
| 53 |
-
images=images if images else None,
|
| 54 |
-
return_tensors="pt",
|
| 55 |
-
padding=True,
|
| 56 |
-
).to("cuda")
|
| 57 |
-
|
| 58 |
-
# Set up streamer for real-time output
|
| 59 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 60 |
-
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
| 61 |
-
|
| 62 |
-
# Start generation in a separate thread
|
| 63 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 64 |
-
thread.start()
|
| 65 |
-
|
| 66 |
-
# Stream the output
|
| 67 |
-
buffer = ""
|
| 68 |
-
yield "Thinking..."
|
| 69 |
-
for new_text in streamer:
|
| 70 |
-
buffer += new_text
|
| 71 |
-
time.sleep(0.01)
|
| 72 |
-
yield buffer
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
# Example inputs
|
| 76 |
-
examples = [
|
| 77 |
-
[{"text": "Explain the movie scene; screen board", "files": ["example_images/int.png"]}],
|
| 78 |
-
[{"text": "Describe the document?", "files": ["example_images/document.jpg"]}],
|
| 79 |
-
[{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}],
|
| 80 |
-
[{"text": "What does this say?", "files": ["example_images/math.jpg"]}],
|
| 81 |
-
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}],
|
| 82 |
-
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
|
| 83 |
-
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
|
| 84 |
-
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
|
| 85 |
-
|
| 86 |
-
]
|
| 87 |
-
|
| 88 |
-
demo = gr.ChatInterface(
|
| 89 |
-
fn=model_inference,
|
| 90 |
-
description="# **Qwen2.5-VL-3B-Instruct**",
|
| 91 |
-
examples=examples,
|
| 92 |
-
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
| 93 |
-
stop_btn="Stop Generation",
|
| 94 |
-
multimodal=True,
|
| 95 |
-
cache_examples=False,
|
| 96 |
-
)
|
| 97 |
-
|
| 98 |
demo.launch(debug=True)
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
|
| 3 |
+
from transformers.image_utils import load_image
|
| 4 |
+
from threading import Thread
|
| 5 |
+
import time
|
| 6 |
+
import torch
|
| 7 |
+
import spaces
|
| 8 |
+
|
| 9 |
+
MODEL_ID = "Qwen/Qwen2.5-VL-7B-Instruct" #else ; MODEL_ID = "Qwen/Qwen2.5-VL-3B-Instruct"
|
| 10 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 11 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 12 |
+
MODEL_ID,
|
| 13 |
+
trust_remote_code=True,
|
| 14 |
+
torch_dtype=torch.bfloat16
|
| 15 |
+
).to("cuda").eval()
|
| 16 |
+
|
| 17 |
+
@spaces.GPU
|
| 18 |
+
def model_inference(input_dict, history):
|
| 19 |
+
text = input_dict["text"]
|
| 20 |
+
files = input_dict["files"]
|
| 21 |
+
|
| 22 |
+
# Load images if provided
|
| 23 |
+
if len(files) > 1:
|
| 24 |
+
images = [load_image(image) for image in files]
|
| 25 |
+
elif len(files) == 1:
|
| 26 |
+
images = [load_image(files[0])]
|
| 27 |
+
else:
|
| 28 |
+
images = []
|
| 29 |
+
|
| 30 |
+
# Validate input
|
| 31 |
+
if text == "" and not images:
|
| 32 |
+
gr.Error("Please input a query and optionally image(s).")
|
| 33 |
+
return
|
| 34 |
+
if text == "" and images:
|
| 35 |
+
gr.Error("Please input a text query along with the image(s).")
|
| 36 |
+
return
|
| 37 |
+
|
| 38 |
+
# Prepare messages for the model
|
| 39 |
+
messages = [
|
| 40 |
+
{
|
| 41 |
+
"role": "user",
|
| 42 |
+
"content": [
|
| 43 |
+
*[{"type": "image", "image": image} for image in images],
|
| 44 |
+
{"type": "text", "text": text},
|
| 45 |
+
],
|
| 46 |
+
}
|
| 47 |
+
]
|
| 48 |
+
|
| 49 |
+
# Apply chat template and process inputs
|
| 50 |
+
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 51 |
+
inputs = processor(
|
| 52 |
+
text=[prompt],
|
| 53 |
+
images=images if images else None,
|
| 54 |
+
return_tensors="pt",
|
| 55 |
+
padding=True,
|
| 56 |
+
).to("cuda")
|
| 57 |
+
|
| 58 |
+
# Set up streamer for real-time output
|
| 59 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 60 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
| 61 |
+
|
| 62 |
+
# Start generation in a separate thread
|
| 63 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 64 |
+
thread.start()
|
| 65 |
+
|
| 66 |
+
# Stream the output
|
| 67 |
+
buffer = ""
|
| 68 |
+
yield "Thinking..."
|
| 69 |
+
for new_text in streamer:
|
| 70 |
+
buffer += new_text
|
| 71 |
+
time.sleep(0.01)
|
| 72 |
+
yield buffer
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# Example inputs
|
| 76 |
+
examples = [
|
| 77 |
+
[{"text": "Explain the movie scene; screen board", "files": ["example_images/int.png"]}],
|
| 78 |
+
[{"text": "Describe the document?", "files": ["example_images/document.jpg"]}],
|
| 79 |
+
[{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}],
|
| 80 |
+
[{"text": "What does this say?", "files": ["example_images/math.jpg"]}],
|
| 81 |
+
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}],
|
| 82 |
+
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
|
| 83 |
+
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
|
| 84 |
+
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
|
| 85 |
+
|
| 86 |
+
]
|
| 87 |
+
|
| 88 |
+
demo = gr.ChatInterface(
|
| 89 |
+
fn=model_inference,
|
| 90 |
+
description="# **Qwen2.5-VL-3B-Instruct**",
|
| 91 |
+
examples=examples,
|
| 92 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
| 93 |
+
stop_btn="Stop Generation",
|
| 94 |
+
multimodal=True,
|
| 95 |
+
cache_examples=False,
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
demo.launch(debug=True)
|