File size: 23,536 Bytes
a0a9007
6e2c6fa
 
 
ab0c591
6e2c6fa
a8b1c40
4a363da
 
 
a8b1c40
 
6e2c6fa
a8b1c40
a0a9007
6e2c6fa
a8b1c40
4a363da
 
09dd649
a8b1c40
 
c11107a
a8b1c40
 
 
6e2c6fa
4a363da
c11107a
 
 
4a363da
c11107a
4a363da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d7b167
4a363da
c11107a
 
 
 
4a363da
c11107a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db025f4
c11107a
db025f4
 
4a363da
 
c11107a
 
 
 
 
 
1d7b167
c11107a
 
 
 
 
 
 
 
 
 
4a363da
 
 
 
 
 
 
 
 
 
 
a8b1c40
1a17d9f
6e2c6fa
4a363da
a8b1c40
4a363da
a8b1c40
4a363da
 
 
 
 
 
 
83c8eb3
4a363da
83c8eb3
 
4a363da
 
 
 
 
83c8eb3
4a363da
83c8eb3
 
aa59ead
4a363da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e2c6fa
 
7c0a5ab
 
4a363da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323e41c
6e2c6fa
 
 
c11107a
6e2c6fa
 
 
 
 
 
4a363da
6e2c6fa
 
a0a9007
4a363da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e2c6fa
4a363da
 
 
 
 
a0a9007
4a363da
 
 
 
6e2c6fa
 
 
4a363da
 
 
 
 
 
c11107a
6e2c6fa
4a363da
6e2c6fa
 
 
 
 
 
 
 
 
a0a9007
a8b1c40
4a363da
6e2c6fa
 
466e3e5
4a363da
 
 
 
 
466e3e5
4a363da
 
c11107a
 
4a363da
c11107a
4a363da
 
 
 
 
 
 
 
 
 
 
80b5e9a
4a363da
 
 
 
 
 
 
 
 
 
 
 
 
c11107a
4a363da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c11107a
4a363da
d418457
4a363da
c947ff2
ab0c591
 
 
 
 
6e2c6fa
 
4a363da
 
 
 
 
 
 
 
 
 
c11107a
4a363da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80b5e9a
4a363da
 
6e2c6fa
4a363da
6e2c6fa
4a363da
 
 
 
 
 
 
 
 
 
 
6e2c6fa
4a363da
 
673b1f9
6e2c6fa
c11107a
6e2c6fa
 
 
1a17d9f
c11107a
 
4a363da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264958f
 
 
 
 
 
 
 
 
 
 
4a363da
 
 
 
 
264958f
6e2c6fa
 
 
 
 
 
4a363da
c11107a
 
ca74739
c11107a
4a363da
 
 
 
 
6e2c6fa
4a363da
 
 
 
 
 
 
6e2c6fa
80b5e9a
d3e8957
 
4a363da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09dd649
a8b1c40
c11107a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
from pathlib import Path
from io import BytesIO
from typing import Optional, Tuple, Dict, Any, Iterable

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
import requests
import fitz

from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    Qwen3VLForConditionalGeneration,
    AutoProcessor,
    TextIteratorStreamer,
)
from transformers.image_utils import load_image

from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes

# --- Theme and CSS Definition ---

# Define the new OrangeRed color palette
colors.orange_red = colors.Color(
    name="orange_red",
    c50="#FFF0E5",
    c100="#FFE0CC",
    c200="#FFC299",
    c300="#FFA366",
    c400="#FF8533",
    c500="#FF4500",  # OrangeRed base color
    c600="#E63E00",
    c700="#CC3700",
    c800="#B33000",
    c900="#992900",
    c950="#802200",
)

class OrangeRedTheme(Soft):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.gray,
        secondary_hue: colors.Color | str = colors.orange_red, # Use the new color
        neutral_hue: colors.Color | str = colors.slate,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
        ),
        font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            background_fill_primary="*primary_50",
            background_fill_primary_dark="*primary_900",
            body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
            body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
            button_primary_text_color="white",
            button_primary_text_color_hover="white",
            button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
            button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
            button_secondary_text_color="black",
            button_secondary_text_color_hover="white",
            button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
            button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
            button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
            button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
            slider_color="*secondary_500",
            slider_color_dark="*secondary_600",
            block_title_text_weight="600",
            block_border_width="3px",
            block_shadow="*shadow_drop_lg",
            button_primary_shadow="*shadow_drop_lg",
            button_large_padding="11px",
            color_accent_soft="*primary_100",
            block_label_background_fill="*primary_200",
        )

# Instantiate the new theme
orange_red_theme = OrangeRedTheme()

css = """
#main-title h1 {
    font-size: 2.3em !important;
}
#output-title h2 {
    font-size: 2.1em !important;
}
"""

MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 1024
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print("Using device:", device)

# --- Model Loading ---

# Load Qwen3-VL-4B-Instruct
MODEL_ID_Q4B = "Qwen/Qwen3-VL-4B-Instruct"
processor_q4b = AutoProcessor.from_pretrained(MODEL_ID_Q4B, trust_remote_code=True)
model_q4b = Qwen3VLForConditionalGeneration.from_pretrained(
    MODEL_ID_Q4B,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16
).to(device).eval()

# Load Qwen3-VL-8B-Instruct
MODEL_ID_Q8B = "Qwen/Qwen3-VL-8B-Instruct"
processor_q8b = AutoProcessor.from_pretrained(MODEL_ID_Q8B, trust_remote_code=True)
model_q8b = Qwen3VLForConditionalGeneration.from_pretrained(
    MODEL_ID_Q8B,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16
).to(device).eval()

# Load Qwen3-VL-2B-Instruct
MODEL_ID_Q2B = "Qwen/Qwen3-VL-2B-Instruct"
processor_q2b = AutoProcessor.from_pretrained(MODEL_ID_Q2B, trust_remote_code=True)
model_q2b = Qwen3VLForConditionalGeneration.from_pretrained(
    MODEL_ID_Q2B,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16
).to(device).eval()

# Load Qwen2.5-VL-7B-Instruct
MODEL_ID_M7B = "Qwen/Qwen2.5-VL-7B-Instruct"
processor_m7b = AutoProcessor.from_pretrained(MODEL_ID_M7B, trust_remote_code=True)
model_m7b = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_M7B,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load Qwen2.5-VL-3B-Instruct
MODEL_ID_X3B = "Qwen/Qwen2.5-VL-3B-Instruct"
processor_x3b = AutoProcessor.from_pretrained(MODEL_ID_X3B, trust_remote_code=True)
model_x3b = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_X3B,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()


# --- Helper Functions ---

def select_model(model_name: str):
    if model_name == "Qwen3-VL-4B-Instruct":
        return processor_q4b, model_q4b
    elif model_name == "Qwen3-VL-8B-Instruct":
        return processor_q8b, model_q8b
    elif model_name == "Qwen3-VL-2B-Instruct":
        return processor_q2b, model_q2b
    elif model_name == "Qwen2.5-VL-7B-Instruct":
        return processor_m7b, model_m7b
    elif model_name == "Qwen2.5-VL-3B-Instruct":
        return processor_x3b, model_x3b
    else:
        raise ValueError("Invalid model selected.")

def extract_gif_frames(gif_path: str):
    if not gif_path:
        return []
    with Image.open(gif_path) as gif:
        total_frames = gif.n_frames
        frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
        frames = []
        for i in frame_indices:
            gif.seek(i)
            frames.append(gif.convert("RGB").copy())
    return frames

def downsample_video(video_path):
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    frames = []
    frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            frames.append(pil_image)
    vidcap.release()
    return frames

def convert_pdf_to_images(file_path: str, dpi: int = 200):
    if not file_path:
        return []
    images = []
    pdf_document = fitz.open(file_path)
    zoom = dpi / 72.0
    mat = fitz.Matrix(zoom, zoom)
    for page_num in range(len(pdf_document)):
        page = pdf_document.load_page(page_num)
        pix = page.get_pixmap(matrix=mat)
        img_data = pix.tobytes("png")
        images.append(Image.open(BytesIO(img_data)))
    pdf_document.close()
    return images

def get_initial_pdf_state() -> Dict[str, Any]:
    return {"pages": [], "total_pages": 0, "current_page_index": 0}

def load_and_preview_pdf(file_path: Optional[str]) -> Tuple[Optional[Image.Image], Dict[str, Any], str]:
    state = get_initial_pdf_state()
    if not file_path:
        return None, state, '<div style="text-align:center;">No file loaded</div>'
    try:
        pages = convert_pdf_to_images(file_path)
        if not pages:
            return None, state, '<div style="text-align:center;">Could not load file</div>'
        state["pages"] = pages
        state["total_pages"] = len(pages)
        page_info_html = f'<div style="text-align:center;">Page 1 / {state["total_pages"]}</div>'
        return pages[0], state, page_info_html
    except Exception as e:
        return None, state, f'<div style="text-align:center;">Failed to load preview: {e}</div>'

def navigate_pdf_page(direction: str, state: Dict[str, Any]):
    if not state or not state["pages"]:
        return None, state, '<div style="text-align:center;">No file loaded</div>'
    current_index = state["current_page_index"]
    total_pages = state["total_pages"]
    if direction == "prev":
        new_index = max(0, current_index - 1)
    elif direction == "next":
        new_index = min(total_pages - 1, current_index + 1)
    else:
        new_index = current_index
    state["current_page_index"] = new_index
    image_preview = state["pages"][new_index]
    page_info_html = f'<div style="text-align:center;">Page {new_index + 1} / {total_pages}</div>'
    return image_preview, state, page_info_html

# --- Generation Functions ---

@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
    if image is None:
        yield "Please upload an image.", "Please upload an image."
        return
    try:
        processor, model = select_model(model_name)
    except ValueError as e:
        yield str(e), str(e)
        return
        
    messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}]
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer, buffer

@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
    if video_path is None:
        yield "Please upload a video.", "Please upload a video."
        return
    try:
        processor, model = select_model(model_name)
    except ValueError as e:
        yield str(e), str(e)
        return

    frames = downsample_video(video_path)
    if not frames:
        yield "Could not process video.", "Could not process video."
        return
        
    messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
    for frame in frames:
        messages[0]["content"].insert(0, {"type": "image"})
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(text=[prompt_full], images=frames, return_tensors="pt", padding=True).to(device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty}
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
       # buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer, buffer

@spaces.GPU
def generate_pdf(model_name: str, text: str, state: Dict[str, Any], max_new_tokens: int = 2048, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
    if not state or not state["pages"]:
        yield "Please upload a PDF file first.", "Please upload a PDF file first."
        return
    try:
        processor, model = select_model(model_name)
    except ValueError as e:
        yield str(e), str(e)
        return

    page_images = state["pages"]
    full_response = ""
    for i, image in enumerate(page_images):
        page_header = f"--- Page {i+1}/{len(page_images)} ---\n"
        yield full_response + page_header, full_response + page_header
        messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}]
        prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        page_buffer = ""
        for new_text in streamer:
            page_buffer += new_text
            yield full_response + page_header + page_buffer, full_response + page_header + page_buffer
            time.sleep(0.01)
        full_response += page_header + page_buffer + "\n\n"

@spaces.GPU
def generate_caption(model_name: str, image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
    if image is None:
        yield "Please upload an image to caption.", "Please upload an image to caption."
        return
    try:
        processor, model = select_model(model_name)
    except ValueError as e:
        yield str(e), str(e)
        return
        
    system_prompt = (
        "You are an AI assistant. For the given image, write a precise caption and provide a structured set of "
        "attributes describing visual elements like objects, people, actions, colors, and environment."
    )
    messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": system_prompt}]}]
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer, buffer

@spaces.GPU
def generate_gif(model_name: str, text: str, gif_path: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
    if gif_path is None:
        yield "Please upload a GIF.", "Please upload a GIF."
        return
    try:
        processor, model = select_model(model_name)
    except ValueError as e:
        yield str(e), str(e)
        return

    frames = extract_gif_frames(gif_path)
    if not frames:
        yield "Could not process GIF.", "Could not process GIF."
        return
    messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
    for frame in frames:
        messages[0]["content"].insert(0, {"type": "image"})
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(text=[prompt_full], images=frames, return_tensors="pt", padding=True).to(device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty}
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
      # buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer, buffer

# --- Examples and Gradio UI ---

image_examples = [["Perform OCR on the image...", "examples/images/1.jpg"],
                  ["Caption the image. Describe the safety measures shown in the image. Conclude whether the situation is (safe or unsafe)...", "examples/images/2.jpg"],
                  ["Solve the problem...", "examples/images/3.png"]]
video_examples = [["Explain the Ad video in detail.", "examples/videos/1.mp4"],
                  ["Explain the video in detail.", "examples/videos/2.mp4"]]
pdf_examples = [["Extract the content precisely.", "examples/pdfs/doc1.pdf"],
                ["Analyze and provide a short report.", "examples/pdfs/doc2.pdf"]]
gif_examples = [["Describe this GIF.", "examples/gifs/1.gif"],
                ["Describe this GIF.", "examples/gifs/2.gif"]]
caption_examples = [["examples/captions/1.JPG"],
                    ["examples/captions/2.jpeg"], ["examples/captions/3.jpeg"]]

with gr.Blocks(theme=orange_red_theme, css=css) as demo:
    pdf_state = gr.State(value=get_initial_pdf_state())
    gr.Markdown("# **Qwen3-VL-Outpost**", elem_id="main-title")
    with gr.Row():
        with gr.Column(scale=2):
            with gr.Tabs():
                with gr.TabItem("Image Inference"):
                    image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    image_upload = gr.Image(type="pil", label="Upload Image", height=290)
                    image_submit = gr.Button("Submit", variant="primary")
                    gr.Examples(examples=image_examples, inputs=[image_query, image_upload])

                with gr.TabItem("PDF Inference"):
                    with gr.Row():
                        with gr.Column(scale=1):
                            pdf_query = gr.Textbox(label="Query Input", placeholder="e.g., 'Summarize this document'")
                            pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"])
                            pdf_submit = gr.Button("Submit", variant="primary")
                        with gr.Column(scale=1):
                            pdf_preview_img = gr.Image(label="PDF Preview", height=290)
                            with gr.Row():
                                prev_page_btn = gr.Button("◀ Previous")
                                page_info = gr.HTML('<div style="text-align:center;">No file loaded</div>')
                                next_page_btn = gr.Button("Next ▶")
                    gr.Examples(examples=pdf_examples, inputs=[pdf_query, pdf_upload])

                with gr.TabItem("Long Caption"):
                    caption_image_upload = gr.Image(type="pil", label="Image to Caption", height=290)
                    caption_submit = gr.Button("Generate Caption", variant="primary")
                    gr.Examples(examples=caption_examples, inputs=[caption_image_upload])
                    
                with gr.TabItem("Video Inference"):
                    video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    video_upload = gr.Video(label="Upload Video(≤30s)", height=290)
                    video_submit = gr.Button("Submit", variant="primary")
                    gr.Examples(examples=video_examples, inputs=[video_query, video_upload])
                    
                with gr.TabItem("Gif Inference"):
                    gif_query = gr.Textbox(label="Query Input", placeholder="e.g., 'What is happening in this gif?'")
                    gif_upload = gr.Image(type="filepath", label="Upload GIF", height=290)
                    gif_submit = gr.Button("Submit", variant="primary")
                    gr.Examples(examples=gif_examples, inputs=[gif_query, gif_upload])
                    
            with gr.Accordion("Advanced options", open=False):
                max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
                temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
                top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)

        with gr.Column(scale=3):
            gr.Markdown("## Output", elem_id="output-title")
            output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=12, show_copy_button=True)
            with gr.Accordion("(Result.md)", open=False):
                markdown_output = gr.Markdown(label="(Result.Md)", latex_delimiters=[
                                {"left": "$$", "right": "$$", "display": True},
                                {"left": "$", "right": "$", "display": False}
                            ])

            model_choice = gr.Radio(
                choices=[
                    "Qwen3-VL-4B-Instruct",
                    "Qwen3-VL-8B-Instruct",
                    "Qwen3-VL-2B-Instruct",
                    "Qwen2.5-VL-7B-Instruct",
                    "Qwen2.5-VL-3B-Instruct"
                ],
                label="Select Model",
                value="Qwen3-VL-4B-Instruct"
            )

    # --- Event Handlers ---
    
    image_submit.click(fn=generate_image,
                       inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
                       outputs=[output, markdown_output])
    
    video_submit.click(fn=generate_video,
                       inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
                       outputs=[output, markdown_output])
    
    pdf_submit.click(fn=generate_pdf,
                     inputs=[model_choice, pdf_query, pdf_state, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
                     outputs=[output, markdown_output])
                     
    gif_submit.click(fn=generate_gif,
                     inputs=[model_choice, gif_query, gif_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
                     outputs=[output, markdown_output])
                     
    caption_submit.click(fn=generate_caption,
                         inputs=[model_choice, caption_image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
                         outputs=[output, markdown_output])

    pdf_upload.change(fn=load_and_preview_pdf, inputs=[pdf_upload], outputs=[pdf_preview_img, pdf_state, page_info])
    prev_page_btn.click(fn=lambda s: navigate_pdf_page("prev", s), inputs=[pdf_state], outputs=[pdf_preview_img, pdf_state, page_info])
    next_page_btn.click(fn=lambda s: navigate_pdf_page("next", s), inputs=[pdf_state], outputs=[pdf_preview_img, pdf_state, page_info])

if __name__ == "__main__":
    demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)