Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -19,83 +19,54 @@ DTYPE = "auto"
|
|
| 19 |
|
| 20 |
CATEGORIES = ["Query", "Caption", "Point", "Detect"]
|
| 21 |
PLACEHOLDERS = {
|
| 22 |
-
"Query": "What
|
| 23 |
-
"Caption": "Select
|
| 24 |
-
"Point": "Select an object from suggestions or enter
|
| 25 |
-
"Detect": "Select an object from suggestions or enter
|
| 26 |
}
|
| 27 |
|
|
|
|
|
|
|
| 28 |
qwen_model = Qwen3VLForConditionalGeneration.from_pretrained(
|
| 29 |
-
"Qwen/Qwen3-VL-
|
| 30 |
-
|
| 31 |
device_map=DEVICE,
|
| 32 |
).eval()
|
| 33 |
qwen_processor = Qwen3VLProcessor.from_pretrained(
|
| 34 |
-
"Qwen/Qwen3-VL-
|
| 35 |
)
|
| 36 |
-
print("Model loaded successfully.")
|
| 37 |
|
| 38 |
|
| 39 |
# --- Utility Functions ---
|
| 40 |
def safe_parse_json(text: str):
|
| 41 |
-
"""Safely parse
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
text =
|
| 47 |
try:
|
| 48 |
return json.loads(text)
|
| 49 |
except json.JSONDecodeError:
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
def annotate_image(image: Image.Image, result: dict, category: str):
|
| 58 |
-
"""Draws annotations on the image based on the model's output."""
|
| 59 |
-
if not isinstance(image, Image.Image) or not isinstance(result, dict):
|
| 60 |
-
return image
|
| 61 |
-
|
| 62 |
-
image_np = np.array(image.convert("RGB"))
|
| 63 |
-
|
| 64 |
-
# Handle Point annotations
|
| 65 |
-
if category == "Point" and "points" in result and result["points"]:
|
| 66 |
-
points_xy = np.array(result["points"])
|
| 67 |
-
if points_xy.size == 0:
|
| 68 |
-
return image
|
| 69 |
-
|
| 70 |
-
# Denormalize points from [0, 1] range to image dimensions
|
| 71 |
-
points_xy *= np.array([image.width, image.height])
|
| 72 |
-
|
| 73 |
-
key_points = sv.KeyPoints(xy=points_xy.reshape(1, -1, 2))
|
| 74 |
-
annotator = sv.VertexAnnotator(radius=8, color=sv.Color.RED)
|
| 75 |
-
annotated_image = annotator.annotate(scene=image_np.copy(), key_points=key_points)
|
| 76 |
-
return Image.fromarray(annotated_image)
|
| 77 |
-
|
| 78 |
-
# Handle Detection annotations
|
| 79 |
-
if category == "Detect" and "objects" in result and result["objects"]:
|
| 80 |
-
boxes_xyxy = np.array(result["objects"])
|
| 81 |
-
if boxes_xyxy.size == 0:
|
| 82 |
-
return image
|
| 83 |
-
|
| 84 |
-
# Denormalize boxes from [0, 1] range to image dimensions
|
| 85 |
-
boxes_xyxy *= np.array([image.width, image.height, image.width, image.height])
|
| 86 |
-
|
| 87 |
-
detections = sv.Detections(xyxy=boxes_xyxy)
|
| 88 |
-
annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX, thickness=4)
|
| 89 |
-
annotated_image = annotator.annotate(scene=image_np.copy(), detections=detections)
|
| 90 |
-
return Image.fromarray(annotated_image)
|
| 91 |
-
|
| 92 |
-
return image
|
| 93 |
-
|
| 94 |
|
| 95 |
# --- Inference Functions ---
|
| 96 |
def run_qwen_inference(image: Image.Image, prompt: str):
|
| 97 |
-
"""Core function to run inference with the
|
| 98 |
-
messages = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
inputs = qwen_processor.apply_chat_template(
|
| 100 |
messages,
|
| 101 |
tokenize=True,
|
|
@@ -105,9 +76,15 @@ def run_qwen_inference(image: Image.Image, prompt: str):
|
|
| 105 |
).to(DEVICE)
|
| 106 |
|
| 107 |
with torch.inference_mode():
|
| 108 |
-
generated_ids = qwen_model.generate(
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
-
generated_ids_trimmed =
|
|
|
|
|
|
|
|
|
|
| 111 |
output_text = qwen_processor.batch_decode(
|
| 112 |
generated_ids_trimmed,
|
| 113 |
skip_special_tokens=True,
|
|
@@ -118,88 +95,174 @@ def run_qwen_inference(image: Image.Image, prompt: str):
|
|
| 118 |
|
| 119 |
@GPU
|
| 120 |
def get_suggested_objects(image: Image.Image):
|
| 121 |
-
"""Get suggested objects in the image using
|
| 122 |
if image is None:
|
| 123 |
-
return
|
| 124 |
-
|
| 125 |
try:
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
match = re.search(r'\[.*?\]', result_text)
|
| 130 |
if match:
|
| 131 |
-
|
| 132 |
-
if isinstance(
|
| 133 |
-
|
|
|
|
|
|
|
| 134 |
except Exception as e:
|
| 135 |
print(f"Error getting suggestions with Qwen: {e}")
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
|
| 140 |
@GPU
|
| 141 |
def process_qwen(image: Image.Image, category: str, prompt: str):
|
| 142 |
-
"""
|
| 143 |
if category == "Query":
|
| 144 |
return run_qwen_inference(image, prompt), {}
|
| 145 |
-
|
| 146 |
elif category == "Caption":
|
| 147 |
full_prompt = f"Provide a {prompt} length caption for the image."
|
| 148 |
return run_qwen_inference(image, full_prompt), {}
|
| 149 |
-
|
| 150 |
elif category == "Point":
|
| 151 |
full_prompt = (
|
| 152 |
-
f"Provide
|
| 153 |
-
|
| 154 |
)
|
| 155 |
output_text = run_qwen_inference(image, full_prompt)
|
| 156 |
parsed_json = safe_parse_json(output_text)
|
| 157 |
-
|
| 158 |
-
if
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
| 162 |
elif category == "Detect":
|
| 163 |
full_prompt = (
|
| 164 |
-
f"Provide bounding box coordinates for
|
| 165 |
-
|
| 166 |
)
|
| 167 |
output_text = run_qwen_inference(image, full_prompt)
|
| 168 |
parsed_json = safe_parse_json(output_text)
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
return "Invalid category", {}
|
| 174 |
|
| 175 |
|
| 176 |
# --- Gradio Interface Logic ---
|
| 177 |
def on_category_and_image_change(image, category):
|
| 178 |
-
"""
|
| 179 |
text_box = gr.Textbox(value="", placeholder=PLACEHOLDERS.get(category, ""), interactive=True)
|
| 180 |
|
| 181 |
if category == "Caption":
|
| 182 |
-
return gr.Radio(choices=["short", "normal", "long"], value="normal", visible=True), text_box
|
| 183 |
-
|
| 184 |
if image is None or category not in ["Point", "Detect"]:
|
| 185 |
return gr.Radio(choices=[], visible=False), text_box
|
| 186 |
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
|
| 190 |
def process_inputs(image, category, prompt):
|
| 191 |
-
"""Main function to handle the user's
|
| 192 |
if image is None:
|
| 193 |
raise gr.Error("Please upload an image.")
|
| 194 |
if not prompt and category not in ["Caption"]:
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
|
|
|
|
|
|
| 198 |
|
| 199 |
-
|
|
|
|
| 200 |
|
|
|
|
| 201 |
qwen_text, qwen_data = process_qwen(image, category, prompt)
|
| 202 |
-
qwen_annotated_image = annotate_image(image, qwen_data
|
| 203 |
|
| 204 |
return qwen_annotated_image, qwen_text
|
| 205 |
|
|
@@ -207,38 +270,54 @@ def process_inputs(image, category, prompt):
|
|
| 207 |
# --- Gradio UI Layout ---
|
| 208 |
with gr.Blocks(theme=Ocean()) as demo:
|
| 209 |
gr.Markdown("# 👓 Object Understanding with Qwen3-VL")
|
| 210 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
with gr.Row():
|
| 213 |
with gr.Column(scale=1):
|
| 214 |
image_input = gr.Image(type="pil", label="Input Image")
|
| 215 |
category_select = gr.Radio(
|
| 216 |
-
choices=CATEGORIES,
|
|
|
|
|
|
|
|
|
|
| 217 |
)
|
| 218 |
suggestions_radio = gr.Radio(
|
| 219 |
-
choices=[],
|
|
|
|
|
|
|
|
|
|
| 220 |
)
|
| 221 |
prompt_input = gr.Textbox(
|
| 222 |
-
placeholder=PLACEHOLDERS[CATEGORIES[0]],
|
|
|
|
|
|
|
| 223 |
)
|
| 224 |
-
submit_btn = gr.Button("
|
| 225 |
|
| 226 |
with gr.Column(scale=2):
|
| 227 |
gr.Markdown("### Qwen/Qwen3-VL-4B-Instruct Output")
|
| 228 |
qwen_img_output = gr.Image(label="Annotated Image")
|
| 229 |
-
qwen_text_output = gr.Textbox(
|
|
|
|
|
|
|
| 230 |
|
| 231 |
gr.Examples(
|
| 232 |
examples=[
|
| 233 |
-
["examples/
|
| 234 |
-
["examples/
|
| 235 |
-
["examples/
|
| 236 |
-
["examples/
|
| 237 |
],
|
| 238 |
inputs=[image_input, category_select, prompt_input],
|
| 239 |
)
|
| 240 |
|
| 241 |
# --- Event Listeners ---
|
|
|
|
| 242 |
category_select.change(
|
| 243 |
fn=on_category_and_image_change,
|
| 244 |
inputs=[image_input, category_select],
|
|
@@ -249,7 +328,15 @@ with gr.Blocks(theme=Ocean()) as demo:
|
|
| 249 |
inputs=[image_input, category_select],
|
| 250 |
outputs=[suggestions_radio, prompt_input],
|
| 251 |
)
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
submit_btn.click(
|
| 254 |
fn=process_inputs,
|
| 255 |
inputs=[image_input, category_select, prompt_input],
|
|
@@ -257,4 +344,4 @@ with gr.Blocks(theme=Ocean()) as demo:
|
|
| 257 |
)
|
| 258 |
|
| 259 |
if __name__ == "__main__":
|
| 260 |
-
demo.launch()
|
|
|
|
| 19 |
|
| 20 |
CATEGORIES = ["Query", "Caption", "Point", "Detect"]
|
| 21 |
PLACEHOLDERS = {
|
| 22 |
+
"Query": "What's in this image?",
|
| 23 |
+
"Caption": "Select caption length: short, normal, or long",
|
| 24 |
+
"Point": "Select an object from suggestions or enter manually",
|
| 25 |
+
"Detect": "Select an object from suggestions or enter manually",
|
| 26 |
}
|
| 27 |
|
| 28 |
+
# --- Model Loading ---
|
| 29 |
+
# Load Qwen3-VL
|
| 30 |
qwen_model = Qwen3VLForConditionalGeneration.from_pretrained(
|
| 31 |
+
"Qwen/Qwen3-VL-4B-Instruct",
|
| 32 |
+
dtype=DTYPE,
|
| 33 |
device_map=DEVICE,
|
| 34 |
).eval()
|
| 35 |
qwen_processor = Qwen3VLProcessor.from_pretrained(
|
| 36 |
+
"Qwen/Qwen3-VL-4B-Instruct",
|
| 37 |
)
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
# --- Utility Functions ---
|
| 41 |
def safe_parse_json(text: str):
|
| 42 |
+
"""Safely parse a string that may be JSON or a Python literal."""
|
| 43 |
+
text = text.strip()
|
| 44 |
+
# Remove markdown code blocks
|
| 45 |
+
text = re.sub(r"^```(json)?", "", text)
|
| 46 |
+
text = re.sub(r"```$", "", text)
|
| 47 |
+
text = text.strip()
|
| 48 |
try:
|
| 49 |
return json.loads(text)
|
| 50 |
except json.JSONDecodeError:
|
| 51 |
+
pass
|
| 52 |
+
try:
|
| 53 |
+
# Fallback to literal_eval for Python-like dictionary/list strings
|
| 54 |
+
return ast.literal_eval(text)
|
| 55 |
+
except Exception:
|
| 56 |
+
return {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
# --- Inference Functions ---
|
| 59 |
def run_qwen_inference(image: Image.Image, prompt: str):
|
| 60 |
+
"""Core function to run inference with the Qwen model."""
|
| 61 |
+
messages = [
|
| 62 |
+
{
|
| 63 |
+
"role": "user",
|
| 64 |
+
"content": [
|
| 65 |
+
{"type": "image", "image": image},
|
| 66 |
+
{"type": "text", "text": prompt},
|
| 67 |
+
],
|
| 68 |
+
}
|
| 69 |
+
]
|
| 70 |
inputs = qwen_processor.apply_chat_template(
|
| 71 |
messages,
|
| 72 |
tokenize=True,
|
|
|
|
| 76 |
).to(DEVICE)
|
| 77 |
|
| 78 |
with torch.inference_mode():
|
| 79 |
+
generated_ids = qwen_model.generate(
|
| 80 |
+
**inputs,
|
| 81 |
+
max_new_tokens=512,
|
| 82 |
+
)
|
| 83 |
|
| 84 |
+
generated_ids_trimmed = [
|
| 85 |
+
out_ids[len(in_ids) :]
|
| 86 |
+
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 87 |
+
]
|
| 88 |
output_text = qwen_processor.batch_decode(
|
| 89 |
generated_ids_trimmed,
|
| 90 |
skip_special_tokens=True,
|
|
|
|
| 95 |
|
| 96 |
@GPU
|
| 97 |
def get_suggested_objects(image: Image.Image):
|
| 98 |
+
"""Get suggested objects in the image using Qwen."""
|
| 99 |
if image is None:
|
| 100 |
+
return []
|
|
|
|
| 101 |
try:
|
| 102 |
+
# Resize image for faster suggestion generation
|
| 103 |
+
suggest_image = image.copy()
|
| 104 |
+
suggest_image.thumbnail((512, 512))
|
| 105 |
+
|
| 106 |
+
prompt = "List the main objects in the image in a Python list format. For example: ['cat', 'dog', 'table']"
|
| 107 |
+
result_text = run_qwen_inference(suggest_image, prompt)
|
| 108 |
+
|
| 109 |
+
# Clean up the output to find the list
|
| 110 |
match = re.search(r'\[.*?\]', result_text)
|
| 111 |
if match:
|
| 112 |
+
suggested_objects = ast.literal_eval(match.group())
|
| 113 |
+
if isinstance(suggested_objects, list):
|
| 114 |
+
# Return up to 3 suggestions
|
| 115 |
+
return suggested_objects[:3]
|
| 116 |
+
return []
|
| 117 |
except Exception as e:
|
| 118 |
print(f"Error getting suggestions with Qwen: {e}")
|
| 119 |
+
return []
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def annotate_image(image: Image.Image, result: dict):
|
| 123 |
+
"""Annotates the image with points or bounding boxes based on model output."""
|
| 124 |
+
if not isinstance(image, Image.Image) or not isinstance(result, dict):
|
| 125 |
+
return image
|
| 126 |
+
|
| 127 |
+
original_width, original_height = image.size
|
| 128 |
+
scene_np = np.array(image.copy())
|
| 129 |
+
|
| 130 |
+
# Handle Point annotations
|
| 131 |
+
if "points" in result and result["points"]:
|
| 132 |
+
points_list = []
|
| 133 |
+
for point in result.get("points", []):
|
| 134 |
+
x = int(point["x"] * original_width)
|
| 135 |
+
y = int(point["y"] * original_height)
|
| 136 |
+
points_list.append([x, y])
|
| 137 |
+
|
| 138 |
+
if not points_list:
|
| 139 |
+
return image
|
| 140 |
+
|
| 141 |
+
points_array = np.array(points_list).reshape(-1, 2)
|
| 142 |
+
key_points = sv.KeyPoints(xy=points_array)
|
| 143 |
+
vertex_annotator = sv.VertexAnnotator(radius=8, color=sv.Color.RED)
|
| 144 |
+
annotated_image_np = vertex_annotator.annotate(
|
| 145 |
+
scene=scene_np, key_points=key_points
|
| 146 |
+
)
|
| 147 |
+
return Image.fromarray(annotated_image_np)
|
| 148 |
+
|
| 149 |
+
# Handle Detection annotations
|
| 150 |
+
if "objects" in result and result["objects"]:
|
| 151 |
+
boxes = []
|
| 152 |
+
for obj in result["objects"]:
|
| 153 |
+
x_min = obj["x_min"] * original_width
|
| 154 |
+
y_min = obj["y_min"] * original_height
|
| 155 |
+
x_max = obj["x_max"] * original_width
|
| 156 |
+
y_max = obj["y_max"] * original_height
|
| 157 |
+
boxes.append([x_min, y_min, x_max, y_max])
|
| 158 |
+
|
| 159 |
+
if not boxes:
|
| 160 |
+
return image
|
| 161 |
+
|
| 162 |
+
detections = sv.Detections(xyxy=np.array(boxes))
|
| 163 |
+
box_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX, thickness=4)
|
| 164 |
+
label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
| 165 |
+
|
| 166 |
+
annotated_image_np = box_annotator.annotate(
|
| 167 |
+
scene=scene_np, detections=detections
|
| 168 |
+
)
|
| 169 |
+
return Image.fromarray(annotated_image_np)
|
| 170 |
+
|
| 171 |
+
return image
|
| 172 |
|
| 173 |
|
| 174 |
@GPU
|
| 175 |
def process_qwen(image: Image.Image, category: str, prompt: str):
|
| 176 |
+
"""Processes the input based on the selected category using the Qwen model."""
|
| 177 |
if category == "Query":
|
| 178 |
return run_qwen_inference(image, prompt), {}
|
| 179 |
+
|
| 180 |
elif category == "Caption":
|
| 181 |
full_prompt = f"Provide a {prompt} length caption for the image."
|
| 182 |
return run_qwen_inference(image, full_prompt), {}
|
| 183 |
+
|
| 184 |
elif category == "Point":
|
| 185 |
full_prompt = (
|
| 186 |
+
f"Provide 2d point coordinates for {prompt}. Report in JSON format like "
|
| 187 |
+
`[{"point_2d": [x, y]}]` " where coordinates are from 0 to 1000."
|
| 188 |
)
|
| 189 |
output_text = run_qwen_inference(image, full_prompt)
|
| 190 |
parsed_json = safe_parse_json(output_text)
|
| 191 |
+
points_result = {"points": []}
|
| 192 |
+
if isinstance(parsed_json, list):
|
| 193 |
+
for item in parsed_json:
|
| 194 |
+
if "point_2d" in item and len(item["point_2d"]) == 2:
|
| 195 |
+
x, y = item["point_2d"]
|
| 196 |
+
points_result["points"].append({"x": x / 1000.0, "y": y / 1000.0})
|
| 197 |
+
return json.dumps(points_result, indent=2), points_result
|
| 198 |
+
|
| 199 |
elif category == "Detect":
|
| 200 |
full_prompt = (
|
| 201 |
+
f"Provide bounding box coordinates for {prompt}. Report in JSON format like "
|
| 202 |
+
`[{"bbox_2d": [xmin, ymin, xmax, ymax]}]` " where coordinates are from 0 to 1000."
|
| 203 |
)
|
| 204 |
output_text = run_qwen_inference(image, full_prompt)
|
| 205 |
parsed_json = safe_parse_json(output_text)
|
| 206 |
+
objects_result = {"objects": []}
|
| 207 |
+
if isinstance(parsed_json, list):
|
| 208 |
+
for item in parsed_json:
|
| 209 |
+
if "bbox_2d" in item and len(item["bbox_2d"]) == 4:
|
| 210 |
+
xmin, ymin, xmax, ymax = item["bbox_2d"]
|
| 211 |
+
objects_result["objects"].append(
|
| 212 |
+
{
|
| 213 |
+
"x_min": xmin / 1000.0,
|
| 214 |
+
"y_min": ymin / 1000.0,
|
| 215 |
+
"x_max": xmax / 1000.0,
|
| 216 |
+
"y_max": ymax / 1000.0,
|
| 217 |
+
}
|
| 218 |
+
)
|
| 219 |
+
return json.dumps(objects_result, indent=2), objects_result
|
| 220 |
|
| 221 |
return "Invalid category", {}
|
| 222 |
|
| 223 |
|
| 224 |
# --- Gradio Interface Logic ---
|
| 225 |
def on_category_and_image_change(image, category):
|
| 226 |
+
"""Generate suggestions when category or image changes."""
|
| 227 |
text_box = gr.Textbox(value="", placeholder=PLACEHOLDERS.get(category, ""), interactive=True)
|
| 228 |
|
| 229 |
if category == "Caption":
|
| 230 |
+
return gr.Radio(choices=["short", "normal", "long"], label="Caption Length", value="normal", visible=True), text_box
|
| 231 |
+
|
| 232 |
if image is None or category not in ["Point", "Detect"]:
|
| 233 |
return gr.Radio(choices=[], visible=False), text_box
|
| 234 |
|
| 235 |
+
suggestions = get_suggested_objects(image)
|
| 236 |
+
if suggestions:
|
| 237 |
+
return gr.Radio(choices=suggestions, label="Suggestions", visible=True, interactive=True), text_box
|
| 238 |
+
else:
|
| 239 |
+
return gr.Radio(choices=[], visible=False), text_box
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
def update_prompt_from_radio(selected_object):
|
| 243 |
+
"""Update prompt textbox when a radio option is selected."""
|
| 244 |
+
if selected_object:
|
| 245 |
+
return gr.Textbox(value=selected_object)
|
| 246 |
+
return gr.Textbox(value="")
|
| 247 |
|
| 248 |
|
| 249 |
def process_inputs(image, category, prompt):
|
| 250 |
+
"""Main function to handle the user's request."""
|
| 251 |
if image is None:
|
| 252 |
raise gr.Error("Please upload an image.")
|
| 253 |
if not prompt and category not in ["Caption"]:
|
| 254 |
+
# Caption can have an empty prompt if a length is selected
|
| 255 |
+
if category == "Caption" and not prompt:
|
| 256 |
+
prompt = "normal" # default
|
| 257 |
+
else:
|
| 258 |
+
raise gr.Error("Please provide a prompt or select a suggestion.")
|
| 259 |
|
| 260 |
+
# Resize the image to make inference quicker
|
| 261 |
+
image.thumbnail((1024, 1024))
|
| 262 |
|
| 263 |
+
# Process with Qwen
|
| 264 |
qwen_text, qwen_data = process_qwen(image, category, prompt)
|
| 265 |
+
qwen_annotated_image = annotate_image(image, qwen_data)
|
| 266 |
|
| 267 |
return qwen_annotated_image, qwen_text
|
| 268 |
|
|
|
|
| 270 |
# --- Gradio UI Layout ---
|
| 271 |
with gr.Blocks(theme=Ocean()) as demo:
|
| 272 |
gr.Markdown("# 👓 Object Understanding with Qwen3-VL")
|
| 273 |
+
gr.Markdown(
|
| 274 |
+
"### Explore object detection, visual grounding, and keypoint detection through natural language prompts."
|
| 275 |
+
)
|
| 276 |
+
gr.Markdown("""
|
| 277 |
+
*Powered by [Qwen/Qwen3-VL-4B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-4B-Instruct). Inspired by the tutorial [Object Detection and Visual Grounding with Qwen 2.5](https://pyimagesearch.com/2025/06/09/object-detection-and-visual-grounding-with-qwen-2-5/) on PyImageSearch.*
|
| 278 |
+
""")
|
| 279 |
|
| 280 |
with gr.Row():
|
| 281 |
with gr.Column(scale=1):
|
| 282 |
image_input = gr.Image(type="pil", label="Input Image")
|
| 283 |
category_select = gr.Radio(
|
| 284 |
+
choices=CATEGORIES,
|
| 285 |
+
value=CATEGORIES[0],
|
| 286 |
+
label="Select Task Category",
|
| 287 |
+
interactive=True,
|
| 288 |
)
|
| 289 |
suggestions_radio = gr.Radio(
|
| 290 |
+
choices=[],
|
| 291 |
+
label="Suggestions",
|
| 292 |
+
visible=False,
|
| 293 |
+
interactive=True,
|
| 294 |
)
|
| 295 |
prompt_input = gr.Textbox(
|
| 296 |
+
placeholder=PLACEHOLDERS[CATEGORIES[0]],
|
| 297 |
+
label="Prompt",
|
| 298 |
+
lines=2,
|
| 299 |
)
|
| 300 |
+
submit_btn = gr.Button("Process Image", variant="primary")
|
| 301 |
|
| 302 |
with gr.Column(scale=2):
|
| 303 |
gr.Markdown("### Qwen/Qwen3-VL-4B-Instruct Output")
|
| 304 |
qwen_img_output = gr.Image(label="Annotated Image")
|
| 305 |
+
qwen_text_output = gr.Textbox(
|
| 306 |
+
label="Text Output", lines=10, interactive=False
|
| 307 |
+
)
|
| 308 |
|
| 309 |
gr.Examples(
|
| 310 |
examples=[
|
| 311 |
+
["examples/example_1.jpg", "Query", "How many cars are in the image?"],
|
| 312 |
+
["examples/example_1.jpg", "Detect", "car"],
|
| 313 |
+
["examples/example_2.JPG", "Point", "the person's face"],
|
| 314 |
+
["examples/example_2.JPG", "Caption", "short"],
|
| 315 |
],
|
| 316 |
inputs=[image_input, category_select, prompt_input],
|
| 317 |
)
|
| 318 |
|
| 319 |
# --- Event Listeners ---
|
| 320 |
+
# When image or category changes, update suggestions
|
| 321 |
category_select.change(
|
| 322 |
fn=on_category_and_image_change,
|
| 323 |
inputs=[image_input, category_select],
|
|
|
|
| 328 |
inputs=[image_input, category_select],
|
| 329 |
outputs=[suggestions_radio, prompt_input],
|
| 330 |
)
|
| 331 |
+
|
| 332 |
+
# When a suggestion is clicked, update the prompt box
|
| 333 |
+
suggestions_radio.change(
|
| 334 |
+
fn=update_prompt_from_radio,
|
| 335 |
+
inputs=[suggestions_radio],
|
| 336 |
+
outputs=[prompt_input],
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
# Main submission action
|
| 340 |
submit_btn.click(
|
| 341 |
fn=process_inputs,
|
| 342 |
inputs=[image_input, category_select, prompt_input],
|
|
|
|
| 344 |
)
|
| 345 |
|
| 346 |
if __name__ == "__main__":
|
| 347 |
+
demo.launch(debug=True)
|