Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,969 Bytes
5075711 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
from pathlib import Path
from io import BytesIO
from typing import Optional, Tuple, Dict, Any, Iterable
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
import requests
import fitz
from transformers import (
Qwen3VLMoeForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
colors.thistle = colors.Color(
name="thistle",
c50="#F9F5F9", c100="#F0E8F1", c200="#E7DBE8", c300="#DECEE0",
c400="#D2BFD8", c500="#D8BFD8", c600="#B59CB7", c700="#927996",
c800="#6F5675", c900="#4C3454", c950="#291233",
)
colors.red_gray = colors.Color(
name="red_gray",
c50="#f7eded", c100="#f5dcdc", c200="#efb4b4", c300="#e78f8f",
c400="#d96a6a", c500="#c65353", c600="#b24444", c700="#8f3434",
c800="#732d2d", c900="#5f2626", c950="#4d2020",
)
class ThistleTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.thistle,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Inconsolata"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="black",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_400, *secondary_400)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_600)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
button_secondary_text_color="black",
button_secondary_text_color_hover="white",
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
button_cancel_background_fill=f"linear-gradient(90deg, {colors.red_gray.c400}, {colors.red_gray.c500})",
button_cancel_background_fill_dark=f"linear-gradient(90deg, {colors.red_gray.c700}, {colors.red_gray.c800})",
button_cancel_background_fill_hover=f"linear-gradient(90deg, {colors.red_gray.c500}, {colors.red_gray.c600})",
button_cancel_background_fill_hover_dark=f"linear-gradient(90deg, {colors.red_gray.c800}, {colors.red_gray.c900})",
button_cancel_text_color="white",
button_cancel_text_color_dark="white",
button_cancel_text_color_hover="white",
button_cancel_text_color_hover_dark="white",
slider_color="*secondary_300",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
thistle_theme = ThistleTheme()
css = """
#main-title h1 {
font-size: 2.3em !important;
}
#output-title h2 {
font-size: 2.1em !important;
}
:root {
--color-grey-50: #f9fafb;
--banner-background: var(--secondary-400);
--banner-text-color: var(--primary-100);
--banner-background-dark: var(--secondary-800);
--banner-text-color-dark: var(--primary-100);
--banner-chrome-height: calc(16px + 43px);
--chat-chrome-height-wide-no-banner: 320px;
--chat-chrome-height-narrow-no-banner: 450px;
--chat-chrome-height-wide: calc(var(--chat-chrome-height-wide-no-banner) + var(--banner-chrome-height));
--chat-chrome-height-narrow: calc(var(--chat-chrome-height-narrow-no-banner) + var(--banner-chrome-height));
}
.banner-message { background-color: var(--banner-background); padding: 5px; margin: 0; border-radius: 5px; border: none; }
.banner-message-text { font-size: 13px; font-weight: bolder; color: var(--banner-text-color) !important; }
body.dark .banner-message { background-color: var(--banner-background-dark) !important; }
body.dark .gradio-container .contain .banner-message .banner-message-text { color: var(--banner-text-color-dark) !important; }
.toast-body { background-color: var(--color-grey-50); }
.html-container:has(.css-styles) { padding: 0; margin: 0; }
.css-styles { height: 0; }
.model-message { text-align: end; }
.model-dropdown-container { display: flex; align-items: center; gap: 10px; padding: 0; }
.user-input-container .multimodal-textbox{ border: none !important; }
.control-button { height: 51px; }
button.cancel { border: var(--button-border-width) solid var(--button-cancel-border-color); background: var(--button-cancel-background-fill); color: var(--button-cancel-text-color); box-shadow: var(--button-cancel-shadow); }
button.cancel:hover, .cancel[disabled] { background: var(--button-cancel-background-fill-hover); color: var(--button-cancel-text-color-hover); }
.opt-out-message { top: 8px; }
.opt-out-message .html-container, .opt-out-checkbox label { font-size: 14px !important; padding: 0 !important; margin: 0 !important; color: var(--neutral-400) !important; }
div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; max-height: 900px !important; }
div.no-padding { padding: 0 !important; }
@media (max-width: 1280px) { div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; } }
@media (max-width: 1024px) {
.responsive-row { flex-direction: column; }
.model-message { text-align: start; font-size: 10px !important; }
.model-dropdown-container { flex-direction: column; align-items: flex-start; }
div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-narrow)) !important; }
}
@media (max-width: 400px) {
.responsive-row { flex-direction: column; }
.model-message { text-align: start; font-size: 10px !important; }
.model-dropdown-container { flex-direction: column; align-items: flex-start; }
div.block.chatbot { max-height: 360px !important; }
}
@media (max-height: 932px) { .chatbot { max-height: 500px !important; } }
@media (max-height: 1280px) { div.block.chatbot { max-height: 800px !important; } }
"""
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 2048
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("current device:", torch.cuda.current_device())
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", device)
MODEL_ID_Q3VL = "Qwen/Qwen3-VL-30B-A3B-Instruct"
processor_q3vl = AutoProcessor.from_pretrained(MODEL_ID_Q3VL, trust_remote_code=True, use_fast=False)
model_q3vl = Qwen3VLMoeForConditionalGeneration.from_pretrained(
MODEL_ID_Q3VL,
trust_remote_code=True,
dtype=torch.float16
).to(device).eval()
def extract_gif_frames(gif_path: str):
if not gif_path:
return []
with Image.open(gif_path) as gif:
total_frames = gif.n_frames
frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
frames = []
for i in frame_indices:
gif.seek(i)
frames.append(gif.convert("RGB").copy())
return frames
def downsample_video(video_path):
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
frames = []
frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
frames.append(pil_image)
vidcap.release()
return frames
def convert_pdf_to_images(file_path: str, dpi: int = 200):
if not file_path:
return []
images = []
pdf_document = fitz.open(file_path)
zoom = dpi / 72.0
mat = fitz.Matrix(zoom, zoom)
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
pix = page.get_pixmap(matrix=mat)
img_data = pix.tobytes("png")
images.append(Image.open(BytesIO(img_data)))
pdf_document.close()
return images
def get_initial_pdf_state() -> Dict[str, Any]:
return {"pages": [], "total_pages": 0, "current_page_index": 0}
def load_and_preview_pdf(file_path: Optional[str]) -> Tuple[Optional[Image.Image], Dict[str, Any], str]:
state = get_initial_pdf_state()
if not file_path:
return None, state, '<div style="text-align:center;">No file loaded</div>'
try:
pages = convert_pdf_to_images(file_path)
if not pages:
return None, state, '<div style="text-align:center;">Could not load file</div>'
state["pages"] = pages
state["total_pages"] = len(pages)
page_info_html = f'<div style="text-align:center;">Page 1 / {state["total_pages"]}</div>'
return pages[0], state, page_info_html
except Exception as e:
return None, state, f'<div style="text-align:center;">Failed to load preview: {e}</div>'
def navigate_pdf_page(direction: str, state: Dict[str, Any]):
if not state or not state["pages"]:
return None, state, '<div style="text-align:center;">No file loaded</div>'
current_index = state["current_page_index"]
total_pages = state["total_pages"]
if direction == "prev":
new_index = max(0, current_index - 1)
elif direction == "next":
new_index = min(total_pages - 1, current_index + 1)
else:
new_index = current_index
state["current_page_index"] = new_index
image_preview = state["pages"][new_index]
page_info_html = f'<div style="text-align:center;">Page {new_index + 1} / {total_pages}</div>'
return image_preview, state, page_info_html
@spaces.GPU
def generate_image(text: str, image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
if image is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}]
prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU
def generate_video(text: str, video_path: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
if video_path is None:
yield "Please upload a video.", "Please upload a video."
return
frames = downsample_video(video_path)
if not frames:
yield "Could not process video.", "Could not process video."
return
messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
for frame in frames:
messages[0]["content"].insert(0, {"type": "image"})
prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor_q3vl(text=[prompt_full], images=frames, return_tensors="pt", padding=True).to(device)
streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty}
thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU
def generate_pdf(text: str, state: Dict[str, Any], max_new_tokens: int = 2048, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
if not state or not state["pages"]:
yield "Please upload a PDF file first.", "Please upload a PDF file first."
return
page_images = state["pages"]
full_response = ""
for i, image in enumerate(page_images):
page_header = f"--- Page {i+1}/{len(page_images)} ---\n"
yield full_response + page_header, full_response + page_header
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}]
prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
thread.start()
page_buffer = ""
for new_text in streamer:
page_buffer += new_text
yield full_response + page_header + page_buffer, full_response + page_header + page_buffer
time.sleep(0.01)
full_response += page_header + page_buffer + "\n\n"
@spaces.GPU
def generate_caption(image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
if image is None:
yield "Please upload an image to caption.", "Please upload an image to caption."
return
system_prompt = (
"You are an AI assistant that rigorously follows this response protocol: For every input image, your primary "
"task is to write a precise caption that captures the essence of the image in clear, concise, and contextually "
"accurate language. Along with the caption, provide a structured set of attributes describing the visual "
"elements, including details such as objects, people, actions, colors, environment, mood, and other notable "
"characteristics. Ensure captions are precise, neutral, and descriptive, avoiding unnecessary elaboration or "
"subjective interpretation unless explicitly required. Do not reference the rules or instructions in the output; "
"only return the formatted caption, attributes, and class_name."
)
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": system_prompt}]}]
prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU
def generate_gif(text: str, gif_path: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
if gif_path is None:
yield "Please upload a GIF.", "Please upload a GIF."
return
frames = extract_gif_frames(gif_path)
if not frames:
yield "Could not process GIF.", "Could not process GIF."
return
messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
for frame in frames:
messages[0]["content"].insert(0, {"type": "image"})
prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor_q3vl(text=[prompt_full], images=frames, return_tensors="pt", padding=True).to(device)
streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty}
thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
image_examples = [["Perform OCR on the image precisely and reconstruct it correctly...", "examples/images/1.jpg"],
["Caption the image. Describe the safety measures shown in the image. Conclude whether the situation is (safe or unsafe)...", "examples/images/2.jpg"],
["Solve the problem...", "examples/images/3.png"]]
video_examples = [["Explain the Ad video in detail.", "examples/videos/1.mp4"],
["Explain the video in detail.", "examples/videos/2.mp4"]]
pdf_examples = [["Extract the content precisely.", "examples/pdfs/doc1.pdf"],
["Analyze and provide a short report.", "examples/pdfs/doc2.pdf"]]
gif_examples = [["Describe this GIF.", "examples/gifs/1.gif"],
["Describe this GIF.", "examples/gifs/2.gif"]]
caption_examples = [["https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/candy.JPG"],
["examples/captions/2.png"], ["examples/captions/3.png"]]
with gr.Blocks(theme=thistle_theme, css=css) as demo:
pdf_state = gr.State(value=get_initial_pdf_state())
gr.Markdown("# **Qwen-3VL:Multimodal**", elem_id="main-title")
with gr.Row():
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("Image Inference"):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Image", height=290)
image_submit = gr.Button("Submit", variant="primary")
gr.Examples(examples=image_examples, inputs=[image_query, image_upload])
with gr.TabItem("Video Inference"):
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
video_upload = gr.Video(label="Video", height=290)
video_submit = gr.Button("Submit", variant="primary")
gr.Examples(examples=video_examples, inputs=[video_query, video_upload])
with gr.TabItem("PDF Inference"):
with gr.Row():
with gr.Column(scale=1):
pdf_query = gr.Textbox(label="Query Input", placeholder="e.g., 'Summarize this document'")
pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"])
pdf_submit = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
pdf_preview_img = gr.Image(label="PDF Preview", height=290)
with gr.Row():
prev_page_btn = gr.Button("◀ Previous")
page_info = gr.HTML('<div style="text-align:center;">No file loaded</div>')
next_page_btn = gr.Button("Next ▶")
gr.Examples(examples=pdf_examples, inputs=[pdf_query, pdf_upload])
with gr.TabItem("Gif Inference"):
gif_query = gr.Textbox(label="Query Input", placeholder="e.g., 'What is happening in this gif?'")
gif_upload = gr.Image(type="filepath", label="Upload GIF", height=290)
gif_submit = gr.Button("Submit", variant="primary")
gr.Examples(examples=gif_examples, inputs=[gif_query, gif_upload])
with gr.TabItem("Caption"):
caption_image_upload = gr.Image(type="pil", label="Image to Caption", height=290)
caption_submit = gr.Button("Generate Caption", variant="primary")
gr.Examples(examples=caption_examples, inputs=[caption_image_upload])
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Column(scale=3):
gr.Markdown("## Output", elem_id="output-title")
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=14, show_copy_button=True)
with gr.Accordion("(Result.md)", open=False):
markdown_output = gr.Markdown(label="(Result.Md)")
image_submit.click(fn=generate_image,
inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output])
video_submit.click(fn=generate_video,
inputs=[video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output])
pdf_submit.click(fn=generate_pdf,
inputs=[pdf_query, pdf_state, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output])
gif_submit.click(fn=generate_gif,
inputs=[gif_query, gif_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output])
caption_submit.click(fn=generate_caption,
inputs=[caption_image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output])
pdf_upload.change(fn=load_and_preview_pdf, inputs=[pdf_upload], outputs=[pdf_preview_img, pdf_state, page_info])
prev_page_btn.click(fn=lambda s: navigate_pdf_page("prev", s), inputs=[pdf_state], outputs=[pdf_preview_img, pdf_state, page_info])
next_page_btn.click(fn=lambda s: navigate_pdf_page("next", s), inputs=[pdf_state], outputs=[pdf_preview_img, pdf_state, page_info])
if __name__ == "__main__":
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True) |