Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -24,80 +24,30 @@ import shutil
|
|
| 24 |
import uuid
|
| 25 |
import zipfile
|
| 26 |
|
| 27 |
-
|
| 28 |
-
image_seq_len,
|
| 29 |
-
base_seq_len: int = 256,
|
| 30 |
-
max_seq_len: int = 4096,
|
| 31 |
-
base_shift: float = 0.5,
|
| 32 |
-
max_shift: float = 1.16,
|
| 33 |
-
):
|
| 34 |
-
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
| 35 |
-
b = base_shift - m * base_seq_len
|
| 36 |
-
mu = image_seq_len * m + b
|
| 37 |
-
return mu
|
| 38 |
-
|
| 39 |
def save_image(img):
|
| 40 |
unique_name = str(uuid.uuid4()) + ".png"
|
| 41 |
img.save(unique_name)
|
| 42 |
return unique_name
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
seed = random.randint(0, MAX_SEED)
|
| 47 |
-
return seed
|
| 48 |
|
| 49 |
-
# Qwen
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
)
|
| 63 |
-
|
| 64 |
-
width = width or 1024
|
| 65 |
-
|
| 66 |
-
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
| 67 |
-
device = self._execution_device
|
| 68 |
-
|
| 69 |
-
# Generate intermediate images during the process
|
| 70 |
-
for i in range(num_inference_steps):
|
| 71 |
-
if i % 5 == 0: # Show progress every 5 steps
|
| 72 |
-
# Generate partial result
|
| 73 |
-
temp_result = self(
|
| 74 |
-
prompt=prompt,
|
| 75 |
-
negative_prompt=negative_prompt,
|
| 76 |
-
height=height,
|
| 77 |
-
width=width,
|
| 78 |
-
guidance_scale=guidance_scale,
|
| 79 |
-
num_inference_steps=max(1, i + 1),
|
| 80 |
-
num_images_per_prompt=num_images_per_prompt,
|
| 81 |
-
generator=generator,
|
| 82 |
-
output_type=output_type,
|
| 83 |
-
).images[0]
|
| 84 |
-
yield temp_result
|
| 85 |
-
torch.cuda.empty_cache()
|
| 86 |
-
|
| 87 |
-
# Final high-quality result
|
| 88 |
-
final_result = self(
|
| 89 |
-
prompt=prompt,
|
| 90 |
-
negative_prompt=negative_prompt,
|
| 91 |
-
height=height,
|
| 92 |
-
width=width,
|
| 93 |
-
guidance_scale=guidance_scale,
|
| 94 |
-
num_inference_steps=num_inference_steps,
|
| 95 |
-
num_images_per_prompt=num_images_per_prompt,
|
| 96 |
-
generator=generator,
|
| 97 |
-
output_type=output_type,
|
| 98 |
-
).images[0]
|
| 99 |
-
|
| 100 |
-
yield final_result
|
| 101 |
|
| 102 |
loras = [
|
| 103 |
# Sample Qwen-compatible LoRAs
|
|
@@ -138,56 +88,16 @@ loras = [
|
|
| 138 |
},
|
| 139 |
]
|
| 140 |
|
| 141 |
-
#--------------------------------------------------Model Initialization-----------------------------------------------------------------------------------------#
|
| 142 |
-
dtype = torch.bfloat16
|
| 143 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 144 |
-
base_model = "Qwen/Qwen-Image"
|
| 145 |
-
|
| 146 |
-
# Load Qwen Image pipeline
|
| 147 |
-
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
|
| 148 |
-
|
| 149 |
-
# Add aspect ratios for Qwen
|
| 150 |
-
aspect_ratios = {
|
| 151 |
-
"1:1": (1024, 1024),
|
| 152 |
-
"16:9": (1344, 768),
|
| 153 |
-
"9:16": (768, 1344),
|
| 154 |
-
"4:3": (1152, 896),
|
| 155 |
-
"3:4": (896, 1152),
|
| 156 |
-
"3:2": (1216, 832),
|
| 157 |
-
"2:3": (832, 1216)
|
| 158 |
-
}
|
| 159 |
-
|
| 160 |
-
MAX_SEED = 2**32-1
|
| 161 |
-
|
| 162 |
-
# Add the custom method to the pipeline
|
| 163 |
-
pipe.qwen_pipe_call_that_returns_an_iterable_of_images = qwen_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
| 164 |
-
|
| 165 |
-
class calculateDuration:
|
| 166 |
-
def __init__(self, activity_name=""):
|
| 167 |
-
self.activity_name = activity_name
|
| 168 |
-
|
| 169 |
-
def __enter__(self):
|
| 170 |
-
self.start_time = time.time()
|
| 171 |
-
return self
|
| 172 |
-
|
| 173 |
-
def __exit__(self, exc_type, exc_value, traceback):
|
| 174 |
-
self.end_time = time.time()
|
| 175 |
-
self.elapsed_time = self.end_time - self.start_time
|
| 176 |
-
if self.activity_name:
|
| 177 |
-
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
|
| 178 |
-
else:
|
| 179 |
-
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
| 180 |
-
|
| 181 |
def load_lora_opt(pipe, lora_input):
|
| 182 |
lora_input = lora_input.strip()
|
| 183 |
if not lora_input:
|
| 184 |
return
|
| 185 |
-
|
| 186 |
# If it's just an ID like "author/model"
|
| 187 |
if "/" in lora_input and not lora_input.startswith("http"):
|
| 188 |
pipe.load_lora_weights(lora_input, adapter_name="default")
|
| 189 |
return
|
| 190 |
-
|
| 191 |
if lora_input.startswith("http"):
|
| 192 |
url = lora_input
|
| 193 |
# Repo page (no blob/resolve)
|
|
@@ -195,11 +105,11 @@ def load_lora_opt(pipe, lora_input):
|
|
| 195 |
repo_id = urlparse(url).path.strip("/")
|
| 196 |
pipe.load_lora_weights(repo_id, adapter_name="default")
|
| 197 |
return
|
| 198 |
-
|
| 199 |
# Blob link → convert to resolve link
|
| 200 |
if "/blob/" in url:
|
| 201 |
url = url.replace("/blob/", "/resolve/")
|
| 202 |
-
|
| 203 |
# Download direct file
|
| 204 |
tmp_dir = tempfile.mkdtemp()
|
| 205 |
local_path = os.path.join(tmp_dir, os.path.basename(urlparse(url).path))
|
|
@@ -215,148 +125,47 @@ def load_lora_opt(pipe, lora_input):
|
|
| 215 |
finally:
|
| 216 |
shutil.rmtree(tmp_dir, ignore_errors=True)
|
| 217 |
|
| 218 |
-
def update_selection(evt: gr.SelectData, width, height):
|
| 219 |
-
selected_lora = loras[evt.index]
|
| 220 |
-
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
| 221 |
-
lora_repo = selected_lora["repo"]
|
| 222 |
-
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅"
|
| 223 |
-
|
| 224 |
-
if "aspect" in selected_lora:
|
| 225 |
-
if selected_lora["aspect"] == "portrait":
|
| 226 |
-
width = 768
|
| 227 |
-
height = 1024
|
| 228 |
-
elif selected_lora["aspect"] == "landscape":
|
| 229 |
-
width = 1024
|
| 230 |
-
height = 768
|
| 231 |
-
else:
|
| 232 |
-
width = 1024
|
| 233 |
-
height = 1024
|
| 234 |
-
|
| 235 |
-
return (
|
| 236 |
-
gr.update(placeholder=new_placeholder),
|
| 237 |
-
updated_text,
|
| 238 |
-
evt.index,
|
| 239 |
-
width,
|
| 240 |
-
height,
|
| 241 |
-
)
|
| 242 |
-
|
| 243 |
-
@spaces.GPU(duration=120)
|
| 244 |
-
def generate_image(prompt_mash, negative_prompt, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
| 245 |
-
pipe.to("cuda")
|
| 246 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 247 |
-
|
| 248 |
-
with calculateDuration("Generating image"):
|
| 249 |
-
# Generate image with live preview
|
| 250 |
-
for img in pipe.qwen_pipe_call_that_returns_an_iterable_of_images(
|
| 251 |
-
prompt=prompt_mash,
|
| 252 |
-
negative_prompt=negative_prompt,
|
| 253 |
-
num_inference_steps=steps,
|
| 254 |
-
guidance_scale=cfg_scale,
|
| 255 |
-
width=width,
|
| 256 |
-
height=height,
|
| 257 |
-
generator=generator,
|
| 258 |
-
):
|
| 259 |
-
yield img
|
| 260 |
-
|
| 261 |
-
def set_dimensions(ar):
|
| 262 |
-
w, h = aspect_ratios[ar]
|
| 263 |
-
return gr.update(value=w), gr.update(value=h)
|
| 264 |
-
|
| 265 |
-
@spaces.GPU(duration=120)
|
| 266 |
-
def run_lora(prompt, negative_prompt, use_negative_prompt, aspect_ratio, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
| 267 |
-
if selected_index is None:
|
| 268 |
-
raise gr.Error("You must select a LoRA before proceeding.🧨")
|
| 269 |
-
|
| 270 |
-
selected_lora = loras[selected_index]
|
| 271 |
-
lora_path = selected_lora["repo"]
|
| 272 |
-
trigger_word = selected_lora["trigger_word"]
|
| 273 |
-
|
| 274 |
-
# Set dimensions based on aspect ratio
|
| 275 |
-
width, height = aspect_ratios[aspect_ratio]
|
| 276 |
-
|
| 277 |
-
if trigger_word:
|
| 278 |
-
if "trigger_position" in selected_lora:
|
| 279 |
-
if selected_lora["trigger_position"] == "prepend":
|
| 280 |
-
prompt_mash = f"{trigger_word} {prompt}"
|
| 281 |
-
else:
|
| 282 |
-
prompt_mash = f"{prompt} {trigger_word}"
|
| 283 |
-
else:
|
| 284 |
-
prompt_mash = f"{trigger_word} {prompt}"
|
| 285 |
-
else:
|
| 286 |
-
prompt_mash = prompt
|
| 287 |
-
|
| 288 |
-
# Handle negative prompt
|
| 289 |
-
final_negative_prompt = negative_prompt if use_negative_prompt else ""
|
| 290 |
-
|
| 291 |
-
with calculateDuration("Unloading LoRA"):
|
| 292 |
-
# Clear existing adapters
|
| 293 |
-
current_adapters = pipe.get_list_adapters() if hasattr(pipe, 'get_list_adapters') else []
|
| 294 |
-
for adapter in current_adapters:
|
| 295 |
-
if hasattr(pipe, 'delete_adapters'):
|
| 296 |
-
pipe.delete_adapters(adapter)
|
| 297 |
-
if hasattr(pipe, 'disable_lora'):
|
| 298 |
-
pipe.disable_lora()
|
| 299 |
-
|
| 300 |
-
# Load new LoRA weights
|
| 301 |
-
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
| 302 |
-
weight_name = selected_lora.get("weights", None)
|
| 303 |
-
load_lora_opt(pipe, lora_path)
|
| 304 |
-
if hasattr(pipe, 'set_adapters'):
|
| 305 |
-
pipe.set_adapters(["default"], adapter_weights=[lora_scale])
|
| 306 |
-
|
| 307 |
-
with calculateDuration("Randomizing seed"):
|
| 308 |
-
if randomize_seed:
|
| 309 |
-
seed = random.randint(0, MAX_SEED)
|
| 310 |
-
|
| 311 |
-
image_generator = generate_image(prompt_mash, final_negative_prompt, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
| 312 |
-
|
| 313 |
-
final_image = None
|
| 314 |
-
step_counter = 0
|
| 315 |
-
for image in image_generator:
|
| 316 |
-
step_counter += 1
|
| 317 |
-
final_image = image
|
| 318 |
-
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
| 319 |
-
yield image, seed, gr.update(value=progress_bar, visible=True)
|
| 320 |
-
|
| 321 |
-
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
| 322 |
-
|
| 323 |
def get_huggingface_safetensors(link):
|
| 324 |
split_link = link.split("/")
|
| 325 |
if len(split_link) == 2:
|
| 326 |
-
model_card = ModelCard.load(link)
|
| 327 |
-
base_model = model_card.data.get("base_model")
|
| 328 |
-
print(base_model)
|
| 329 |
-
|
| 330 |
-
# Allow Qwen models
|
| 331 |
-
if base_model and "qwen" not in base_model.lower():
|
| 332 |
-
raise Exception("Qwen-compatible LoRA Not Found!")
|
| 333 |
-
|
| 334 |
-
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
| 335 |
-
trigger_word = model_card.data.get("instance_prompt", "")
|
| 336 |
-
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
| 337 |
-
|
| 338 |
-
fs = HfFileSystem()
|
| 339 |
try:
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
except Exception as e:
|
| 348 |
-
print(e)
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
return split_link[1], link, safetensors_name, trigger_word, image_url
|
| 353 |
|
| 354 |
def check_custom_model(link):
|
| 355 |
if link.startswith("https://"):
|
| 356 |
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
|
| 357 |
link_split = link.split("huggingface.co/")
|
| 358 |
return get_huggingface_safetensors(link_split[1])
|
| 359 |
-
else:
|
| 360 |
return get_huggingface_safetensors(link)
|
| 361 |
|
| 362 |
def add_custom_lora(custom_lora):
|
|
@@ -364,6 +173,9 @@ def add_custom_lora(custom_lora):
|
|
| 364 |
if custom_lora:
|
| 365 |
try:
|
| 366 |
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
|
|
|
|
|
|
|
|
|
|
| 367 |
print(f"Loaded custom LoRA: {repo}")
|
| 368 |
card = f'''
|
| 369 |
<div class="custom_lora_card">
|
|
@@ -377,6 +189,7 @@ def add_custom_lora(custom_lora):
|
|
| 377 |
</div>
|
| 378 |
</div>
|
| 379 |
'''
|
|
|
|
| 380 |
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
|
| 381 |
if not existing_item_index:
|
| 382 |
new_item = {
|
|
@@ -386,21 +199,161 @@ def add_custom_lora(custom_lora):
|
|
| 386 |
"weights": path,
|
| 387 |
"trigger_word": trigger_word
|
| 388 |
}
|
| 389 |
-
print(new_item)
|
| 390 |
existing_item_index = len(loras)
|
| 391 |
loras.append(new_item)
|
| 392 |
-
|
| 393 |
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
|
| 394 |
except Exception as e:
|
| 395 |
-
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-Qwen
|
| 396 |
-
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-Qwen
|
| 397 |
else:
|
| 398 |
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
| 399 |
|
| 400 |
def remove_custom_lora():
|
| 401 |
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
| 402 |
|
| 403 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
|
| 405 |
css = '''
|
| 406 |
#gen_btn{height: 100%}
|
|
@@ -420,7 +373,7 @@ css = '''
|
|
| 420 |
'''
|
| 421 |
|
| 422 |
with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120)) as app:
|
| 423 |
-
title = gr.HTML("""<h1>Qwen Image LoRA DLC
|
| 424 |
selected_index = gr.State(None)
|
| 425 |
|
| 426 |
with gr.Row():
|
|
@@ -428,101 +381,127 @@ with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120))
|
|
| 428 |
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="✦︎ Choose the LoRA and type the prompt")
|
| 429 |
with gr.Column(scale=1, elem_id="gen_column"):
|
| 430 |
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
| 431 |
-
|
| 432 |
with gr.Row():
|
| 433 |
with gr.Column():
|
| 434 |
selected_info = gr.Markdown("")
|
| 435 |
gallery = gr.Gallery(
|
| 436 |
[(item["image"], item["title"]) for item in loras],
|
| 437 |
-
label="Qwen LoRA
|
| 438 |
allow_preview=False,
|
| 439 |
columns=3,
|
| 440 |
elem_id="gallery",
|
| 441 |
show_share_button=False
|
| 442 |
)
|
| 443 |
-
|
| 444 |
with gr.Group():
|
| 445 |
-
custom_lora = gr.Textbox(label="Enter Custom
|
| 446 |
-
gr.Markdown("[Check the list of Qwen
|
| 447 |
-
|
| 448 |
custom_lora_info = gr.HTML(visible=False)
|
| 449 |
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
| 450 |
-
|
| 451 |
with gr.Column():
|
| 452 |
-
|
| 453 |
-
result = gr.Image(label="Generated Image", format="png")
|
| 454 |
-
|
| 455 |
with gr.Row():
|
| 456 |
aspect_ratio = gr.Dropdown(
|
| 457 |
label="Aspect Ratio",
|
| 458 |
choices=list(aspect_ratios.keys()),
|
| 459 |
value="1:1",
|
| 460 |
)
|
|
|
|
|
|
|
| 461 |
|
| 462 |
with gr.Row():
|
| 463 |
with gr.Accordion("Advanced Settings", open=False):
|
| 464 |
-
|
| 465 |
with gr.Row():
|
| 466 |
use_negative_prompt = gr.Checkbox(
|
| 467 |
-
label="Use negative prompt",
|
|
|
|
| 468 |
)
|
| 469 |
negative_prompt = gr.Text(
|
| 470 |
label="Negative prompt",
|
| 471 |
max_lines=1,
|
| 472 |
placeholder="Enter a negative prompt",
|
| 473 |
value="text, watermark, copyright, blurry, low resolution",
|
| 474 |
-
visible=True,
|
| 475 |
)
|
| 476 |
|
| 477 |
-
with gr.
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 498 |
aspect_ratio.change(
|
| 499 |
fn=set_dimensions,
|
| 500 |
inputs=aspect_ratio,
|
| 501 |
outputs=[width, height]
|
| 502 |
)
|
| 503 |
-
|
|
|
|
| 504 |
use_negative_prompt.change(
|
| 505 |
fn=lambda x: gr.update(visible=x),
|
| 506 |
inputs=use_negative_prompt,
|
| 507 |
outputs=negative_prompt
|
| 508 |
)
|
| 509 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 510 |
custom_lora.input(
|
| 511 |
add_custom_lora,
|
| 512 |
inputs=[custom_lora],
|
| 513 |
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
|
| 514 |
)
|
| 515 |
-
|
| 516 |
custom_lora_button.click(
|
| 517 |
remove_custom_lora,
|
| 518 |
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
|
| 519 |
)
|
| 520 |
-
|
| 521 |
gr.on(
|
| 522 |
triggers=[generate_button.click, prompt.submit],
|
| 523 |
fn=run_lora,
|
| 524 |
-
inputs=[
|
| 525 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 526 |
)
|
| 527 |
|
| 528 |
app.queue()
|
|
|
|
| 24 |
import uuid
|
| 25 |
import zipfile
|
| 26 |
|
| 27 |
+
# Helper functions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
def save_image(img):
|
| 29 |
unique_name = str(uuid.uuid4()) + ".png"
|
| 30 |
img.save(unique_name)
|
| 31 |
return unique_name
|
| 32 |
|
| 33 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 34 |
+
MAX_IMAGE_SIZE = 2048
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
# Load Qwen/Qwen-Image pipeline
|
| 37 |
+
dtype = torch.bfloat16
|
| 38 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 39 |
+
|
| 40 |
+
# Load Qwen model
|
| 41 |
+
pipe = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=dtype).to(device)
|
| 42 |
+
|
| 43 |
+
# Aspect ratios
|
| 44 |
+
aspect_ratios = {
|
| 45 |
+
"1:1": (1328, 1328),
|
| 46 |
+
"16:9": (1664, 928),
|
| 47 |
+
"9:16": (928, 1664),
|
| 48 |
+
"4:3": (1472, 1140),
|
| 49 |
+
"3:4": (1140, 1472)
|
| 50 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
loras = [
|
| 53 |
# Sample Qwen-compatible LoRAs
|
|
|
|
| 88 |
},
|
| 89 |
]
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
def load_lora_opt(pipe, lora_input):
|
| 92 |
lora_input = lora_input.strip()
|
| 93 |
if not lora_input:
|
| 94 |
return
|
| 95 |
+
|
| 96 |
# If it's just an ID like "author/model"
|
| 97 |
if "/" in lora_input and not lora_input.startswith("http"):
|
| 98 |
pipe.load_lora_weights(lora_input, adapter_name="default")
|
| 99 |
return
|
| 100 |
+
|
| 101 |
if lora_input.startswith("http"):
|
| 102 |
url = lora_input
|
| 103 |
# Repo page (no blob/resolve)
|
|
|
|
| 105 |
repo_id = urlparse(url).path.strip("/")
|
| 106 |
pipe.load_lora_weights(repo_id, adapter_name="default")
|
| 107 |
return
|
| 108 |
+
|
| 109 |
# Blob link → convert to resolve link
|
| 110 |
if "/blob/" in url:
|
| 111 |
url = url.replace("/blob/", "/resolve/")
|
| 112 |
+
|
| 113 |
# Download direct file
|
| 114 |
tmp_dir = tempfile.mkdtemp()
|
| 115 |
local_path = os.path.join(tmp_dir, os.path.basename(urlparse(url).path))
|
|
|
|
| 125 |
finally:
|
| 126 |
shutil.rmtree(tmp_dir, ignore_errors=True)
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
def get_huggingface_safetensors(link):
|
| 129 |
split_link = link.split("/")
|
| 130 |
if len(split_link) == 2:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
try:
|
| 132 |
+
response = requests.get(f"https://huggingface.co/api/models/{link}")
|
| 133 |
+
response.raise_for_status()
|
| 134 |
+
model_info = response.json()
|
| 135 |
+
|
| 136 |
+
# Check if it's a Qwen model
|
| 137 |
+
if "qwen" not in model_info.get("tags", []):
|
| 138 |
+
raise Exception("Not a Qwen LoRA model!")
|
| 139 |
+
|
| 140 |
+
# Get image if available
|
| 141 |
+
image_url = None
|
| 142 |
+
if "cardData" in model_info and "widget" in model_info["cardData"]:
|
| 143 |
+
if len(model_info["cardData"]["widget"]) > 0:
|
| 144 |
+
image_url = model_info["cardData"]["widget"][0].get("output", {}).get("url", None)
|
| 145 |
+
|
| 146 |
+
# Try to find safetensors file
|
| 147 |
+
safetensors_name = None
|
| 148 |
+
try:
|
| 149 |
+
model_files = requests.get(f"https://huggingface.co/api/models/{link}/tree/main").json()
|
| 150 |
+
for file in model_files:
|
| 151 |
+
if file.get("path", "").endswith(".safetensors"):
|
| 152 |
+
safetensors_name = file["path"]
|
| 153 |
+
break
|
| 154 |
+
except:
|
| 155 |
+
pass
|
| 156 |
+
|
| 157 |
+
return split_link[1], link, safetensors_name, "trigger_word", image_url
|
| 158 |
except Exception as e:
|
| 159 |
+
print(f"Error getting model info: {e}")
|
| 160 |
+
raise Exception(f"Failed to get model info: {e}")
|
| 161 |
+
return None, None, None, None, None
|
|
|
|
|
|
|
| 162 |
|
| 163 |
def check_custom_model(link):
|
| 164 |
if link.startswith("https://"):
|
| 165 |
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
|
| 166 |
link_split = link.split("huggingface.co/")
|
| 167 |
return get_huggingface_safetensors(link_split[1])
|
| 168 |
+
else:
|
| 169 |
return get_huggingface_safetensors(link)
|
| 170 |
|
| 171 |
def add_custom_lora(custom_lora):
|
|
|
|
| 173 |
if custom_lora:
|
| 174 |
try:
|
| 175 |
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
|
| 176 |
+
if not title:
|
| 177 |
+
raise Exception("Invalid LoRA model")
|
| 178 |
+
|
| 179 |
print(f"Loaded custom LoRA: {repo}")
|
| 180 |
card = f'''
|
| 181 |
<div class="custom_lora_card">
|
|
|
|
| 189 |
</div>
|
| 190 |
</div>
|
| 191 |
'''
|
| 192 |
+
|
| 193 |
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
|
| 194 |
if not existing_item_index:
|
| 195 |
new_item = {
|
|
|
|
| 199 |
"weights": path,
|
| 200 |
"trigger_word": trigger_word
|
| 201 |
}
|
|
|
|
| 202 |
existing_item_index = len(loras)
|
| 203 |
loras.append(new_item)
|
| 204 |
+
|
| 205 |
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
|
| 206 |
except Exception as e:
|
| 207 |
+
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-Qwen LoRA")
|
| 208 |
+
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-Qwen LoRA"), gr.update(visible=False), gr.update(), "", None, ""
|
| 209 |
else:
|
| 210 |
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
| 211 |
|
| 212 |
def remove_custom_lora():
|
| 213 |
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
| 214 |
|
| 215 |
+
def update_selection(evt: gr.SelectData, width, height):
|
| 216 |
+
selected_lora = loras[evt.index]
|
| 217 |
+
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
| 218 |
+
lora_repo = selected_lora["repo"]
|
| 219 |
+
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅"
|
| 220 |
+
|
| 221 |
+
# Update aspect ratio based on LoRA if it has aspect info
|
| 222 |
+
if "aspect" in selected_lora:
|
| 223 |
+
if selected_lora["aspect"] == "portrait":
|
| 224 |
+
width = 928
|
| 225 |
+
height = 1664
|
| 226 |
+
elif selected_lora["aspect"] == "landscape":
|
| 227 |
+
width = 1664
|
| 228 |
+
height = 928
|
| 229 |
+
else:
|
| 230 |
+
width = 1328
|
| 231 |
+
height = 1328
|
| 232 |
+
|
| 233 |
+
return (
|
| 234 |
+
gr.update(placeholder=new_placeholder),
|
| 235 |
+
updated_text,
|
| 236 |
+
evt.index,
|
| 237 |
+
width,
|
| 238 |
+
height,
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
@spaces.GPU(duration=120)
|
| 242 |
+
def generate_qwen(
|
| 243 |
+
prompt: str,
|
| 244 |
+
negative_prompt: str = "",
|
| 245 |
+
seed: int = 0,
|
| 246 |
+
width: int = 1024,
|
| 247 |
+
height: int = 1024,
|
| 248 |
+
guidance_scale: float = 4.0,
|
| 249 |
+
randomize_seed: bool = False,
|
| 250 |
+
num_inference_steps: int = 50,
|
| 251 |
+
num_images: int = 1,
|
| 252 |
+
zip_images: bool = False,
|
| 253 |
+
lora_input: str = "",
|
| 254 |
+
lora_scale: float = 1.0,
|
| 255 |
+
progress=gr.Progress(track_tqdm=True),
|
| 256 |
+
):
|
| 257 |
+
if randomize_seed:
|
| 258 |
+
seed = random.randint(0, MAX_SEED)
|
| 259 |
+
|
| 260 |
+
generator = torch.Generator(device).manual_seed(seed)
|
| 261 |
+
|
| 262 |
+
start_time = time.time()
|
| 263 |
+
|
| 264 |
+
# Clear any existing LoRA adapters
|
| 265 |
+
current_adapters = pipe.get_list_adapters()
|
| 266 |
+
for adapter in current_adapters:
|
| 267 |
+
pipe.delete_adapters(adapter)
|
| 268 |
+
pipe.disable_lora()
|
| 269 |
+
|
| 270 |
+
use_lora = False
|
| 271 |
+
if lora_input and lora_input.strip() != "":
|
| 272 |
+
load_lora_opt(pipe, lora_input)
|
| 273 |
+
pipe.set_adapters(["default"], adapter_weights=[lora_scale])
|
| 274 |
+
use_lora = True
|
| 275 |
+
|
| 276 |
+
images = pipe(
|
| 277 |
+
prompt=prompt,
|
| 278 |
+
negative_prompt=negative_prompt if negative_prompt else "",
|
| 279 |
+
height=height,
|
| 280 |
+
width=width,
|
| 281 |
+
guidance_scale=guidance_scale,
|
| 282 |
+
num_inference_steps=num_inference_steps,
|
| 283 |
+
num_images_per_prompt=num_images,
|
| 284 |
+
generator=generator,
|
| 285 |
+
output_type="pil",
|
| 286 |
+
).images
|
| 287 |
+
|
| 288 |
+
end_time = time.time()
|
| 289 |
+
duration = end_time - start_time
|
| 290 |
+
|
| 291 |
+
image_paths = [save_image(img) for img in images]
|
| 292 |
+
zip_path = None
|
| 293 |
+
if zip_images:
|
| 294 |
+
zip_name = str(uuid.uuid4()) + ".zip"
|
| 295 |
+
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
| 296 |
+
for i, img_path in enumerate(image_paths):
|
| 297 |
+
zipf.write(img_path, arcname=f"Img_{i}.png")
|
| 298 |
+
zip_path = zip_name
|
| 299 |
+
|
| 300 |
+
# Clean up adapters
|
| 301 |
+
current_adapters = pipe.get_list_adapters()
|
| 302 |
+
for adapter in current_adapters:
|
| 303 |
+
pipe.delete_adapters(adapter)
|
| 304 |
+
pipe.disable_lora()
|
| 305 |
+
|
| 306 |
+
return image_paths, seed, f"{duration:.2f}", zip_path
|
| 307 |
+
|
| 308 |
+
@spaces.GPU(duration=120)
|
| 309 |
+
def run_lora(
|
| 310 |
+
prompt: str,
|
| 311 |
+
negative_prompt: str,
|
| 312 |
+
use_negative_prompt: bool,
|
| 313 |
+
seed: int,
|
| 314 |
+
width: int,
|
| 315 |
+
height: int,
|
| 316 |
+
guidance_scale: float,
|
| 317 |
+
randomize_seed: bool,
|
| 318 |
+
num_inference_steps: int,
|
| 319 |
+
num_images: int,
|
| 320 |
+
zip_images: bool,
|
| 321 |
+
selected_index: int,
|
| 322 |
+
lora_scale: float,
|
| 323 |
+
progress=gr.Progress(track_tqdm=True),
|
| 324 |
+
):
|
| 325 |
+
if selected_index is None:
|
| 326 |
+
raise gr.Error("You must select a LoRA before proceeding.🧨")
|
| 327 |
+
|
| 328 |
+
selected_lora = loras[selected_index]
|
| 329 |
+
lora_repo = selected_lora["repo"]
|
| 330 |
+
trigger_word = selected_lora["trigger_word"]
|
| 331 |
+
|
| 332 |
+
if trigger_word:
|
| 333 |
+
prompt_mash = f"{trigger_word} {prompt}"
|
| 334 |
+
else:
|
| 335 |
+
prompt_mash = prompt
|
| 336 |
+
|
| 337 |
+
final_negative_prompt = negative_prompt if use_negative_prompt else ""
|
| 338 |
+
|
| 339 |
+
if randomize_seed:
|
| 340 |
+
seed = random.randint(0, MAX_SEED)
|
| 341 |
+
|
| 342 |
+
return generate_qwen(
|
| 343 |
+
prompt=prompt_mash,
|
| 344 |
+
negative_prompt=final_negative_prompt,
|
| 345 |
+
seed=seed,
|
| 346 |
+
width=width,
|
| 347 |
+
height=height,
|
| 348 |
+
guidance_scale=guidance_scale,
|
| 349 |
+
randomize_seed=False, # Already handled
|
| 350 |
+
num_inference_steps=num_inference_steps,
|
| 351 |
+
num_images=num_images,
|
| 352 |
+
zip_images=zip_images,
|
| 353 |
+
lora_input=lora_repo,
|
| 354 |
+
lora_scale=lora_scale,
|
| 355 |
+
progress=progress,
|
| 356 |
+
)
|
| 357 |
|
| 358 |
css = '''
|
| 359 |
#gen_btn{height: 100%}
|
|
|
|
| 373 |
'''
|
| 374 |
|
| 375 |
with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120)) as app:
|
| 376 |
+
title = gr.HTML("""<h1>Qwen Image LoRA DLC ❤️🔥</h1>""", elem_id="title")
|
| 377 |
selected_index = gr.State(None)
|
| 378 |
|
| 379 |
with gr.Row():
|
|
|
|
| 381 |
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="✦︎ Choose the LoRA and type the prompt")
|
| 382 |
with gr.Column(scale=1, elem_id="gen_column"):
|
| 383 |
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
| 384 |
+
|
| 385 |
with gr.Row():
|
| 386 |
with gr.Column():
|
| 387 |
selected_info = gr.Markdown("")
|
| 388 |
gallery = gr.Gallery(
|
| 389 |
[(item["image"], item["title"]) for item in loras],
|
| 390 |
+
label="Qwen LoRA DLC's",
|
| 391 |
allow_preview=False,
|
| 392 |
columns=3,
|
| 393 |
elem_id="gallery",
|
| 394 |
show_share_button=False
|
| 395 |
)
|
|
|
|
| 396 |
with gr.Group():
|
| 397 |
+
custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Qwen-Image-Sketch-Smudge")
|
| 398 |
+
gr.Markdown("[Check the list of Qwen LoRA's](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image)", elem_id="lora_list")
|
|
|
|
| 399 |
custom_lora_info = gr.HTML(visible=False)
|
| 400 |
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
| 401 |
+
|
| 402 |
with gr.Column():
|
| 403 |
+
result = gr.Gallery(label="Generated Images", columns=1, show_label=False, preview=True)
|
|
|
|
|
|
|
| 404 |
with gr.Row():
|
| 405 |
aspect_ratio = gr.Dropdown(
|
| 406 |
label="Aspect Ratio",
|
| 407 |
choices=list(aspect_ratios.keys()),
|
| 408 |
value="1:1",
|
| 409 |
)
|
| 410 |
+
with gr.Row():
|
| 411 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=48)
|
| 412 |
|
| 413 |
with gr.Row():
|
| 414 |
with gr.Accordion("Advanced Settings", open=False):
|
| 415 |
+
|
| 416 |
with gr.Row():
|
| 417 |
use_negative_prompt = gr.Checkbox(
|
| 418 |
+
label="Use negative prompt",
|
| 419 |
+
value=True,
|
| 420 |
)
|
| 421 |
negative_prompt = gr.Text(
|
| 422 |
label="Negative prompt",
|
| 423 |
max_lines=1,
|
| 424 |
placeholder="Enter a negative prompt",
|
| 425 |
value="text, watermark, copyright, blurry, low resolution",
|
|
|
|
| 426 |
)
|
| 427 |
|
| 428 |
+
with gr.Row():
|
| 429 |
+
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=4.0)
|
| 430 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=50)
|
| 431 |
+
|
| 432 |
+
with gr.Row():
|
| 433 |
+
width = gr.Slider(label="Width", minimum=512, maximum=2048, step=64, value=1328)
|
| 434 |
+
height = gr.Slider(label="Height", minimum=512, maximum=2048, step=64, value=1328)
|
| 435 |
+
|
| 436 |
+
with gr.Row():
|
| 437 |
+
num_images = gr.Slider(label="Number of Images", minimum=1, maximum=5, step=1, value=1)
|
| 438 |
+
zip_images = gr.Checkbox(label="Zip generated images", value=False)
|
| 439 |
+
|
| 440 |
+
with gr.Row():
|
| 441 |
+
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 442 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
| 443 |
+
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.01, value=1.0)
|
| 444 |
+
|
| 445 |
+
# Output information
|
| 446 |
+
with gr.Row():
|
| 447 |
+
seed_display = gr.Textbox(label="Seed used", interactive=False)
|
| 448 |
+
generation_time = gr.Textbox(label="Generation time (seconds)", interactive=False)
|
| 449 |
+
zip_file = gr.File(label="Download ZIP")
|
| 450 |
+
|
| 451 |
+
# Update aspect ratio
|
| 452 |
+
def set_dimensions(ar):
|
| 453 |
+
w, h = aspect_ratios[ar]
|
| 454 |
+
return gr.update(value=w), gr.update(value=h)
|
| 455 |
+
|
| 456 |
aspect_ratio.change(
|
| 457 |
fn=set_dimensions,
|
| 458 |
inputs=aspect_ratio,
|
| 459 |
outputs=[width, height]
|
| 460 |
)
|
| 461 |
+
|
| 462 |
+
# Negative prompt visibility
|
| 463 |
use_negative_prompt.change(
|
| 464 |
fn=lambda x: gr.update(visible=x),
|
| 465 |
inputs=use_negative_prompt,
|
| 466 |
outputs=negative_prompt
|
| 467 |
)
|
| 468 |
+
|
| 469 |
+
gallery.select(
|
| 470 |
+
update_selection,
|
| 471 |
+
inputs=[width, height],
|
| 472 |
+
outputs=[prompt, selected_info, selected_index, width, height]
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
custom_lora.input(
|
| 476 |
add_custom_lora,
|
| 477 |
inputs=[custom_lora],
|
| 478 |
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
|
| 479 |
)
|
| 480 |
+
|
| 481 |
custom_lora_button.click(
|
| 482 |
remove_custom_lora,
|
| 483 |
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
|
| 484 |
)
|
| 485 |
+
|
| 486 |
gr.on(
|
| 487 |
triggers=[generate_button.click, prompt.submit],
|
| 488 |
fn=run_lora,
|
| 489 |
+
inputs=[
|
| 490 |
+
prompt,
|
| 491 |
+
negative_prompt,
|
| 492 |
+
use_negative_prompt,
|
| 493 |
+
seed,
|
| 494 |
+
width,
|
| 495 |
+
height,
|
| 496 |
+
#guidance_scale,
|
| 497 |
+
randomize_seed,
|
| 498 |
+
steps,
|
| 499 |
+
num_images,
|
| 500 |
+
zip_images,
|
| 501 |
+
selected_index,
|
| 502 |
+
lora_scale,
|
| 503 |
+
],
|
| 504 |
+
outputs=[result, seed_display, generation_time, zip_file]
|
| 505 |
)
|
| 506 |
|
| 507 |
app.queue()
|