prithivMLmods commited on
Commit
690dcad
·
verified ·
1 Parent(s): eaf7a23

update app

Browse files
Files changed (1) hide show
  1. app.py +539 -0
app.py ADDED
@@ -0,0 +1,539 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import copy
4
+ import math
5
+ import time
6
+ import random
7
+ import logging
8
+ import numpy as np
9
+ from typing import Any, Dict, List, Optional, Union
10
+ import torch
11
+ from PIL import Image
12
+ import gradio as gr
13
+ import spaces
14
+ from diffusers import (
15
+ DiffusionPipeline,
16
+ FlowMatchEulerDiscreteScheduler)
17
+ from huggingface_hub import (
18
+ hf_hub_download,
19
+ HfFileSystem,
20
+ ModelCard,
21
+ snapshot_download)
22
+ from diffusers.utils import load_image
23
+ import requests
24
+ from urllib.parse import urlparse
25
+ import tempfile
26
+ import shutil
27
+ import uuid
28
+ import zipfile
29
+
30
+
31
+ # META: CUDA_CHECK / GPU_INFO
32
+ device = "cuda" if torch.cuda.is_available() else "cpu"
33
+ print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
34
+ print("torch.__version__ =", torch.__version__)
35
+ print("torch.version.cuda =", torch.version.cuda)
36
+ print("cuda available:", torch.cuda.is_available())
37
+ print("cuda device count:", torch.cuda.device_count())
38
+ if torch.cuda.is_available():
39
+ print("current device:", torch.cuda.current_device())
40
+ print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
41
+
42
+ print("Using device:", device)
43
+
44
+ loras = [
45
+ # Sample Qwen-compatible LoRAs
46
+ {
47
+ "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Studio-Realism/resolve/main/images/2.png",
48
+ "title": "Studio Realism",
49
+ "repo": "prithivMLmods/Qwen-Image-Studio-Realism",
50
+ "weights": "qwen-studio-realism.safetensors",
51
+ "trigger_word": "Studio Realism"
52
+ },
53
+ {
54
+ "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Sketch-Smudge/resolve/main/images/1.png",
55
+ "title": "Sketch Smudge",
56
+ "repo": "prithivMLmods/Qwen-Image-Sketch-Smudge",
57
+ "weights": "qwen-sketch-smudge.safetensors",
58
+ "trigger_word": "Sketch Smudge"
59
+ },
60
+ {
61
+ "image": "https://huggingface.co/Shakker-Labs/AWPortrait-QW/resolve/main/images/08fdaf6b644b61136340d5c908ca37993e47f34cdbe2e8e8251c4c72.jpg",
62
+ "title": "AWPortrait QW",
63
+ "repo": "Shakker-Labs/AWPortrait-QW",
64
+ "weights": "AWPortrait-QW_1.0.safetensors",
65
+ "trigger_word": "Portrait"
66
+ },
67
+ {
68
+ "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Anime-LoRA/resolve/main/images/1.png",
69
+ "title": "Qwen Anime",
70
+ "repo": "prithivMLmods/Qwen-Image-Anime-LoRA",
71
+ "weights": "qwen-anime.safetensors",
72
+ "trigger_word": "Qwen Anime"
73
+ },
74
+ {
75
+ "image": "https://huggingface.co/flymy-ai/qwen-image-realism-lora/resolve/main/assets/flymy_realism.png",
76
+ "title": "Image Realism",
77
+ "repo": "flymy-ai/qwen-image-realism-lora",
78
+ "weights": "flymy_realism.safetensors",
79
+ "trigger_word": "Super Realism Portrait"
80
+ },
81
+ {
82
+ "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Fragmented-Portraiture/resolve/main/images/3.png",
83
+ "title": "Fragmented Portraiture",
84
+ "repo": "prithivMLmods/Qwen-Image-Fragmented-Portraiture",
85
+ "weights": "qwen-fragmented-portraiture.safetensors",
86
+ "trigger_word": "Fragmented Portraiture"
87
+ },
88
+ {
89
+ "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Synthetic-Face/resolve/main/images/2.png",
90
+ "title": "Synthetic Face",
91
+ "repo": "prithivMLmods/Qwen-Image-Synthetic-Face",
92
+ "weights": "qwen-synthetic-face.safetensors",
93
+ "trigger_word": "Synthetic Face"
94
+ },
95
+ {
96
+ "image": "https://huggingface.co/itspoidaman/qwenglitch/resolve/main/images/GyZTwJIbkAAhS4h.jpeg",
97
+ "title": "Qwen Glitch",
98
+ "repo": "itspoidaman/qwenglitch",
99
+ "weights": "qwenglitch1.safetensors",
100
+ "trigger_word": "qwenglitch"
101
+ },
102
+ {
103
+ "image": "https://huggingface.co/alfredplpl/qwen-image-modern-anime-lora/resolve/main/sample1.jpg",
104
+ "title": "Modern Anime Lora",
105
+ "repo": "alfredplpl/qwen-image-modern-anime-lora",
106
+ "weights": "lora.safetensors",
107
+ "trigger_word": "Japanese modern anime style"
108
+ },
109
+ ]
110
+
111
+ # Initialize the base model
112
+ dtype = torch.bfloat16
113
+ base_model = "Qwen/Qwen-Image"
114
+
115
+ # Scheduler configuration from the Qwen-Image-Lightning repository
116
+ scheduler_config = {
117
+ "base_image_seq_len": 256,
118
+ "base_shift": math.log(3),
119
+ "invert_sigmas": False,
120
+ "max_image_seq_len": 8192,
121
+ "max_shift": math.log(3),
122
+ "num_train_timesteps": 1000,
123
+ "shift": 1.0,
124
+ "shift_terminal": None,
125
+ "stochastic_sampling": False,
126
+ "time_shift_type": "exponential",
127
+ "use_beta_sigmas": False,
128
+ "use_dynamic_shifting": True,
129
+ "use_exponential_sigmas": False,
130
+ "use_karras_sigmas": False,
131
+ }
132
+
133
+ scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
134
+ pipe = DiffusionPipeline.from_pretrained(
135
+ base_model, scheduler=scheduler, torch_dtype=dtype
136
+ ).to(device)
137
+
138
+ # Lightning LoRA info (no global state)
139
+ LIGHTNING_LORA_REPO = "lightx2v/Qwen-Image-Lightning"
140
+ LIGHTNING_LORA_WEIGHT = "Qwen-Image-Lightning-8steps-V1.0.safetensors"
141
+
142
+ MAX_SEED = np.iinfo(np.int32).max
143
+
144
+ class Timer:
145
+ def __init__(self, task_name=""):
146
+ self.task_name = task_name
147
+
148
+ def __enter__(self):
149
+ self.start_time = time.time()
150
+ return self
151
+
152
+ def __exit__(self, exc_type, exc_value, traceback):
153
+ self.end_time = time.time()
154
+ self.elapsed_time = self.end_time - self.start_time
155
+ if self.task_name:
156
+ print(f"Elapsed time for {self.task_name}: {self.elapsed_time:.6f} seconds")
157
+ else:
158
+ print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
159
+
160
+ def compute_image_dimensions(aspect_ratio):
161
+ """Converts aspect ratio string to width, height tuple."""
162
+ if aspect_ratio == "1:1":
163
+ return 1024, 1024
164
+ elif aspect_ratio == "16:9":
165
+ return 1152, 640
166
+ elif aspect_ratio == "9:16":
167
+ return 640, 1152
168
+ elif aspect_ratio == "4:3":
169
+ return 1024, 768
170
+ elif aspect_ratio == "3:4":
171
+ return 768, 1024
172
+ elif aspect_ratio == "3:2":
173
+ return 1024, 688
174
+ elif aspect_ratio == "2:3":
175
+ return 688, 1024
176
+ else:
177
+ return 1024, 1024
178
+
179
+ def handle_lora_selection(evt: gr.SelectData, aspect_ratio):
180
+ selected_lora = loras[evt.index]
181
+ new_placeholder = f"Type a prompt for {selected_lora['title']}"
182
+ lora_repo = selected_lora["repo"]
183
+ updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅"
184
+
185
+ # Update aspect ratio if specified in LoRA config
186
+ if "aspect" in selected_lora:
187
+ if selected_lora["aspect"] == "portrait":
188
+ aspect_ratio = "9:16"
189
+ elif selected_lora["aspect"] == "landscape":
190
+ aspect_ratio = "16:9"
191
+ else:
192
+ aspect_ratio = "1:1"
193
+
194
+ return (
195
+ gr.update(placeholder=new_placeholder),
196
+ updated_text,
197
+ evt.index,
198
+ aspect_ratio,
199
+ )
200
+
201
+ def adjust_generation_mode(speed_mode):
202
+ """Update UI based on speed/quality toggle."""
203
+ if speed_mode == "Fast (8 steps)":
204
+ return gr.update(value="Fast mode selected - 8 steps with Lightning LoRA"), 8, 1.0
205
+ else:
206
+ return gr.update(value="Base mode selected - 50 steps for best quality"), 50, 4.0
207
+
208
+ @spaces.GPU(duration=100)
209
+ def create_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, negative_prompt=""):
210
+ pipe.to("cuda")
211
+ generator = torch.Generator(device="cuda").manual_seed(seed)
212
+
213
+ with Timer("Generating image"):
214
+ # Generate image
215
+ image = pipe(
216
+ prompt=prompt_mash,
217
+ negative_prompt=negative_prompt,
218
+ num_inference_steps=steps,
219
+ true_cfg_scale=cfg_scale, # Use true_cfg_scale for Qwen-Image
220
+ width=width,
221
+ height=height,
222
+ generator=generator,
223
+ ).images[0]
224
+
225
+ return image
226
+
227
+ @spaces.GPU(duration=100)
228
+ def process_adapter_generation(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, progress=gr.Progress(track_tqdm=True)):
229
+ if selected_index is None:
230
+ raise gr.Error("You must select a LoRA before proceeding.")
231
+
232
+ selected_lora = loras[selected_index]
233
+ lora_path = selected_lora["repo"]
234
+ trigger_word = selected_lora["trigger_word"]
235
+
236
+ # Prepare prompt with trigger word
237
+ if trigger_word:
238
+ if "trigger_position" in selected_lora:
239
+ if selected_lora["trigger_position"] == "prepend":
240
+ prompt_mash = f"{trigger_word} {prompt}"
241
+ else:
242
+ prompt_mash = f"{prompt} {trigger_word}"
243
+ else:
244
+ prompt_mash = f"{trigger_word} {prompt}"
245
+ else:
246
+ prompt_mash = prompt
247
+
248
+ # Always unload any existing LoRAs first to avoid conflicts
249
+ with Timer("Unloading existing LoRAs"):
250
+ pipe.unload_lora_weights()
251
+
252
+ # Load LoRAs based on speed mode
253
+ if speed_mode == "Fast (8 steps)":
254
+ with Timer("Loading Lightning LoRA and style LoRA"):
255
+ # Load Lightning LoRA first
256
+ pipe.load_lora_weights(
257
+ LIGHTNING_LORA_REPO,
258
+ weight_name=LIGHTNING_LORA_WEIGHT,
259
+ adapter_name="lightning"
260
+ )
261
+
262
+ # Load the selected style LoRA
263
+ weight_name = selected_lora.get("weights", None)
264
+ pipe.load_lora_weights(
265
+ lora_path,
266
+ weight_name=weight_name,
267
+ low_cpu_mem_usage=True,
268
+ adapter_name="style"
269
+ )
270
+
271
+ # Set both adapters active with their weights
272
+ pipe.set_adapters(["lightning", "style"], adapter_weights=[1.0, lora_scale])
273
+ else:
274
+ # Quality mode - only load the style LoRA
275
+ with Timer(f"Loading LoRA weights for {selected_lora['title']}"):
276
+ weight_name = selected_lora.get("weights", None)
277
+ pipe.load_lora_weights(
278
+ lora_path,
279
+ weight_name=weight_name,
280
+ low_cpu_mem_usage=True,
281
+ adapter_name="style"
282
+ )
283
+ pipe.set_adapters(["style"], adapter_weights=[lora_scale])
284
+
285
+ # Set random seed for reproducibility
286
+ with Timer("Randomizing seed"):
287
+ if randomize_seed:
288
+ seed = random.randint(0, MAX_SEED)
289
+
290
+ # Get image dimensions from aspect ratio
291
+ width, height = compute_image_dimensions(aspect_ratio)
292
+
293
+ # Generate the image
294
+ final_image = create_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
295
+
296
+ return final_image, seed
297
+
298
+ def fetch_hf_adapter_files(link):
299
+ split_link = link.split("/")
300
+ if len(split_link) != 2:
301
+ raise Exception("Invalid Hugging Face repository link format.")
302
+
303
+ print(f"Repository attempted: {split_link}")
304
+
305
+ # Load model card
306
+ model_card = ModelCard.load(link)
307
+ base_model = model_card.data.get("base_model")
308
+ print(f"Base model: {base_model}")
309
+
310
+ # Validate model type (for Qwen-Image)
311
+ acceptable_models = {"Qwen/Qwen-Image"}
312
+
313
+ models_to_check = base_model if isinstance(base_model, list) else [base_model]
314
+
315
+ if not any(model in acceptable_models for model in models_to_check):
316
+ raise Exception("Not a Qwen-Image LoRA!")
317
+
318
+ # Extract image and trigger word
319
+ image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
320
+ trigger_word = model_card.data.get("instance_prompt", "")
321
+ image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
322
+
323
+ # Initialize Hugging Face file system
324
+ fs = HfFileSystem()
325
+ try:
326
+ list_of_files = fs.ls(link, detail=False)
327
+
328
+ # Find safetensors file
329
+ safetensors_name = None
330
+ for file in list_of_files:
331
+ filename = file.split("/")[-1]
332
+ if filename.endswith(".safetensors"):
333
+ safetensors_name = filename
334
+ break
335
+
336
+ if not safetensors_name:
337
+ raise Exception("No valid *.safetensors file found in the repository.")
338
+
339
+ except Exception as e:
340
+ print(e)
341
+ raise Exception("You didn't include a valid Hugging Face repository with a *.safetensors LoRA")
342
+
343
+ return split_link[1], link, safetensors_name, trigger_word, image_url
344
+
345
+ def validate_custom_adapter(link):
346
+ print(f"Checking a custom model on: {link}")
347
+
348
+ if link.endswith('.safetensors'):
349
+ if 'huggingface.co' in link:
350
+ parts = link.split('/')
351
+ try:
352
+ hf_index = parts.index('huggingface.co')
353
+ username = parts[hf_index + 1]
354
+ repo_name = parts[hf_index + 2]
355
+ repo = f"{username}/{repo_name}"
356
+
357
+ safetensors_name = parts[-1]
358
+
359
+ try:
360
+ model_card = ModelCard.load(repo)
361
+ trigger_word = model_card.data.get("instance_prompt", "")
362
+ image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
363
+ image_url = f"https://huggingface.co/{repo}/resolve/main/{image_path}" if image_path else None
364
+ except:
365
+ trigger_word = ""
366
+ image_url = None
367
+
368
+ return repo_name, repo, safetensors_name, trigger_word, image_url
369
+ except:
370
+ raise Exception("Invalid safetensors URL format")
371
+
372
+ if link.startswith("https://"):
373
+ if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
374
+ link_split = link.split("huggingface.co/")
375
+ return fetch_hf_adapter_files(link_split[1])
376
+ else:
377
+ return fetch_hf_adapter_files(link)
378
+
379
+ def incorporate_custom_adapter(custom_lora):
380
+ global loras
381
+ if custom_lora:
382
+ try:
383
+ title, repo, path, trigger_word, image = validate_custom_adapter(custom_lora)
384
+ print(f"Loaded custom LoRA: {repo}")
385
+ card = f'''
386
+ <div class="custom_lora_card">
387
+ <span>Loaded custom LoRA:</span>
388
+ <div class="card_internal">
389
+ <img src="{image}" />
390
+ <div>
391
+ <h3>{title}</h3>
392
+ <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
393
+ </div>
394
+ </div>
395
+ </div>
396
+ '''
397
+ existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
398
+ if existing_item_index is None:
399
+ new_item = {
400
+ "image": image,
401
+ "title": title,
402
+ "repo": repo,
403
+ "weights": path,
404
+ "trigger_word": trigger_word
405
+ }
406
+ print(new_item)
407
+ loras.append(new_item)
408
+ existing_item_index = len(loras) - 1 # Get the actual index after adding
409
+
410
+ return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
411
+ except Exception as e:
412
+ gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-Qwen-Image LoRA, this was the issue: {e}")
413
+ return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-Qwen-Image LoRA"), gr.update(visible=True), gr.update(), "", None, ""
414
+ else:
415
+ return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
416
+
417
+ def discard_custom_adapter():
418
+ return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
419
+
420
+ process_adapter_generation.zerogpu = True
421
+
422
+ css = '''
423
+ #gen_btn{height: 100%}
424
+ #gen_column{align-self: stretch}
425
+ #title{text-align: center}
426
+ #title h1{font-size: 3em; display:inline-flex; align-items:center}
427
+ #title img{width: 100px; margin-right: 0.5em}
428
+ #gallery .grid-wrap{height: 10vh}
429
+ #lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
430
+ .card_internal{display: flex;height: 100px;margin-top: .5em}
431
+ .card_internal img{margin-right: 1em}
432
+ .styler{--form-gap-width: 0px !important}
433
+ #speed_status{padding: .5em; border-radius: 5px; margin: 1em 0}
434
+ '''
435
+
436
+ with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(240, 240)) as app:
437
+ title = gr.HTML("""<h1>Qwen Image LoRA DLC⛵</h1>""", elem_id="title")
438
+ selected_index = gr.State(None)
439
+
440
+ with gr.Row():
441
+ with gr.Column(scale=3):
442
+ prompt = gr.Textbox(label="Prompt", lines=1, placeholder="✦︎ Choose the LoRA and type the prompt")
443
+ with gr.Column(scale=1, elem_id="gen_column"):
444
+ generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
445
+
446
+ with gr.Row():
447
+ with gr.Column():
448
+ selected_info = gr.Markdown("")
449
+ gallery = gr.Gallery(
450
+ [(item["image"], item["title"]) for item in loras],
451
+ label="LoRA Gallery",
452
+ allow_preview=False,
453
+ columns=3,
454
+ elem_id="gallery",
455
+ show_share_button=False
456
+ )
457
+ with gr.Group():
458
+ custom_lora = gr.Textbox(label="Custom LoRA", placeholder="username/lora-model-name")
459
+ gr.Markdown("[Check Qwen-Image LoRAs](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image)", elem_id="lora_list")
460
+ custom_lora_info = gr.HTML(visible=False)
461
+ custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
462
+
463
+ with gr.Column():
464
+ result = gr.Image(label="Generated Image", format="png")
465
+
466
+ with gr.Row():
467
+ aspect_ratio = gr.Dropdown(
468
+ label="Aspect Ratio",
469
+ choices=["1:1", "16:9", "9:16", "4:3", "3:4", "3:2", "2:3"],
470
+ value="3:2"
471
+ )
472
+ with gr.Row():
473
+ speed_mode = gr.Dropdown(
474
+ label="Output Mode",
475
+ choices=["Fast (8 steps)", "Base (50 steps)"],
476
+ value="Base (50 steps)",
477
+ )
478
+
479
+ speed_status = gr.Markdown("Base mode selected - 50 steps for best quality", elem_id="speed_status")
480
+
481
+ with gr.Row():
482
+ with gr.Accordion("Advanced Settings", open=False):
483
+ with gr.Column():
484
+ with gr.Row():
485
+ cfg_scale = gr.Slider(
486
+ label="Guidance Scale (True CFG)",
487
+ minimum=1.0,
488
+ maximum=5.0,
489
+ step=0.1,
490
+ value=4.0,
491
+ info="Lower for speed mode, higher for quality"
492
+ )
493
+ steps = gr.Slider(
494
+ label="Steps",
495
+ minimum=4,
496
+ maximum=50,
497
+ step=1,
498
+ value=50,
499
+ info="Automatically set by speed mode"
500
+ )
501
+
502
+ with gr.Row():
503
+ randomize_seed = gr.Checkbox(True, label="Randomize seed")
504
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
505
+ lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.01, value=1.0)
506
+
507
+ # Event handlers
508
+ gallery.select(
509
+ handle_lora_selection,
510
+ inputs=[aspect_ratio],
511
+ outputs=[prompt, selected_info, selected_index, aspect_ratio]
512
+ )
513
+
514
+ speed_mode.change(
515
+ adjust_generation_mode,
516
+ inputs=[speed_mode],
517
+ outputs=[speed_status, steps, cfg_scale]
518
+ )
519
+
520
+ custom_lora.input(
521
+ incorporate_custom_adapter,
522
+ inputs=[custom_lora],
523
+ outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
524
+ )
525
+
526
+ custom_lora_button.click(
527
+ discard_custom_adapter,
528
+ outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
529
+ )
530
+
531
+ gr.on(
532
+ triggers=[generate_button.click, prompt.submit],
533
+ fn=process_adapter_generation,
534
+ inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode],
535
+ outputs=[result, seed]
536
+ )
537
+
538
+ app.queue()
539
+ app.launch(share=False, ssr_mode=False, show_error=True)