Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,7 +13,9 @@ import gradio as gr
|
|
| 13 |
import spaces
|
| 14 |
from diffusers import (
|
| 15 |
DiffusionPipeline,
|
| 16 |
-
FlowMatchEulerDiscreteScheduler
|
|
|
|
|
|
|
| 17 |
from huggingface_hub import (
|
| 18 |
hf_hub_download,
|
| 19 |
HfFileSystem,
|
|
@@ -142,15 +144,30 @@ pipe = DiffusionPipeline.from_pretrained(
|
|
| 142 |
base_model, scheduler=scheduler, torch_dtype=dtype
|
| 143 |
).to(device)
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
# Lightning LoRA info (no global state)
|
| 146 |
LIGHTNING_LORA_REPO = "lightx2v/Qwen-Image-Lightning"
|
| 147 |
LIGHTNING_LORA_WEIGHT = "Qwen-Image-Lightning-8steps-V1.0.safetensors"
|
| 148 |
|
| 149 |
-
MAX_SEED =
|
| 150 |
|
| 151 |
-
class
|
| 152 |
-
def __init__(self,
|
| 153 |
-
self.
|
| 154 |
|
| 155 |
def __enter__(self):
|
| 156 |
self.start_time = time.time()
|
|
@@ -159,8 +176,8 @@ class Timer:
|
|
| 159 |
def __exit__(self, exc_type, exc_value, traceback):
|
| 160 |
self.end_time = time.time()
|
| 161 |
self.elapsed_time = self.end_time - self.start_time
|
| 162 |
-
if self.
|
| 163 |
-
print(f"Elapsed time for {self.
|
| 164 |
else:
|
| 165 |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
| 166 |
|
|
@@ -213,26 +230,85 @@ def adjust_generation_mode(speed_mode):
|
|
| 213 |
return gr.update(value="Base mode selected - 48 steps for best quality"), 48, 4.0
|
| 214 |
|
| 215 |
@spaces.GPU(duration=100)
|
| 216 |
-
def
|
|
|
|
| 217 |
pipe.to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
|
|
|
| 233 |
|
| 234 |
@spaces.GPU(duration=100)
|
| 235 |
-
def process_adapter_generation(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, progress=gr.Progress(track_tqdm=True)):
|
| 236 |
if selected_index is None:
|
| 237 |
raise gr.Error("You must select a LoRA before proceeding.")
|
| 238 |
|
|
@@ -253,14 +329,16 @@ def process_adapter_generation(prompt, cfg_scale, steps, selected_index, randomi
|
|
| 253 |
prompt_mash = prompt
|
| 254 |
|
| 255 |
# Always unload any existing LoRAs first to avoid conflicts
|
| 256 |
-
with
|
| 257 |
pipe.unload_lora_weights()
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
-
# Load LoRAs based on speed mode
|
| 260 |
if speed_mode == "Fast (8 steps)":
|
| 261 |
-
with
|
| 262 |
# Load Lightning LoRA first
|
| 263 |
-
|
| 264 |
LIGHTNING_LORA_REPO,
|
| 265 |
weight_name=LIGHTNING_LORA_WEIGHT,
|
| 266 |
adapter_name="lightning"
|
|
@@ -268,7 +346,7 @@ def process_adapter_generation(prompt, cfg_scale, steps, selected_index, randomi
|
|
| 268 |
|
| 269 |
# Load the selected style LoRA
|
| 270 |
weight_name = selected_lora.get("weights", None)
|
| 271 |
-
|
| 272 |
lora_path,
|
| 273 |
weight_name=weight_name,
|
| 274 |
low_cpu_mem_usage=True,
|
|
@@ -276,29 +354,36 @@ def process_adapter_generation(prompt, cfg_scale, steps, selected_index, randomi
|
|
| 276 |
)
|
| 277 |
|
| 278 |
# Set both adapters active with their weights
|
| 279 |
-
|
| 280 |
else:
|
| 281 |
# Quality mode - only load the style LoRA
|
| 282 |
-
with
|
| 283 |
weight_name = selected_lora.get("weights", None)
|
| 284 |
-
|
| 285 |
lora_path,
|
| 286 |
weight_name=weight_name,
|
| 287 |
low_cpu_mem_usage=True
|
| 288 |
)
|
| 289 |
|
| 290 |
# Set random seed for reproducibility
|
| 291 |
-
with
|
| 292 |
if randomize_seed:
|
| 293 |
seed = random.randint(0, MAX_SEED)
|
| 294 |
|
| 295 |
# Get image dimensions from aspect ratio
|
| 296 |
width, height = compute_image_dimensions(aspect_ratio)
|
| 297 |
|
| 298 |
-
|
| 299 |
-
|
|
|
|
|
|
|
|
|
|
| 300 |
|
| 301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
|
| 303 |
def fetch_hf_adapter_files(link):
|
| 304 |
split_link = link.split("/")
|
|
@@ -422,8 +507,6 @@ def incorporate_custom_adapter(custom_lora):
|
|
| 422 |
def discard_custom_adapter():
|
| 423 |
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
| 424 |
|
| 425 |
-
process_adapter_generation.zerogpu = True
|
| 426 |
-
|
| 427 |
css = '''
|
| 428 |
#gen_btn{height: 100%}
|
| 429 |
#gen_column{align-self: stretch}
|
|
@@ -436,6 +519,10 @@ css = '''
|
|
| 436 |
.card_internal img{margin-right: 1em}
|
| 437 |
.styler{--form-gap-width: 0px !important}
|
| 438 |
#speed_status{padding: .5em; border-radius: 5px; margin: 1em 0}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 439 |
'''
|
| 440 |
|
| 441 |
with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120)) as app:
|
|
@@ -467,6 +554,7 @@ with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120))
|
|
| 467 |
|
| 468 |
with gr.Column():
|
| 469 |
result = gr.Image(label="Generated Image")
|
|
|
|
| 470 |
|
| 471 |
with gr.Row():
|
| 472 |
aspect_ratio = gr.Dropdown(
|
|
@@ -508,6 +596,10 @@ with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120))
|
|
| 508 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 509 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
| 510 |
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.01, value=1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 511 |
|
| 512 |
# Event handlers
|
| 513 |
gallery.select(
|
|
@@ -536,8 +628,8 @@ with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120))
|
|
| 536 |
gr.on(
|
| 537 |
triggers=[generate_button.click, prompt.submit],
|
| 538 |
fn=process_adapter_generation,
|
| 539 |
-
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode],
|
| 540 |
-
outputs=[result, seed]
|
| 541 |
)
|
| 542 |
|
| 543 |
app.queue()
|
|
|
|
| 13 |
import spaces
|
| 14 |
from diffusers import (
|
| 15 |
DiffusionPipeline,
|
| 16 |
+
FlowMatchEulerDiscreteScheduler,
|
| 17 |
+
AutoencoderKL,
|
| 18 |
+
AutoPipelineForImage2Image)
|
| 19 |
from huggingface_hub import (
|
| 20 |
hf_hub_download,
|
| 21 |
HfFileSystem,
|
|
|
|
| 144 |
base_model, scheduler=scheduler, torch_dtype=dtype
|
| 145 |
).to(device)
|
| 146 |
|
| 147 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
| 148 |
+
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
| 149 |
+
pipe.vae = taef1
|
| 150 |
+
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
| 151 |
+
base_model,
|
| 152 |
+
vae=good_vae,
|
| 153 |
+
transformer=pipe.transformer,
|
| 154 |
+
text_encoder=pipe.text_encoder,
|
| 155 |
+
tokenizer=pipe.tokenizer,
|
| 156 |
+
text_encoder_2=pipe.text_encoder_2,
|
| 157 |
+
tokenizer_2=pipe.tokenizer_2,
|
| 158 |
+
scheduler=scheduler,
|
| 159 |
+
torch_dtype=dtype
|
| 160 |
+
).to(device)
|
| 161 |
+
|
| 162 |
# Lightning LoRA info (no global state)
|
| 163 |
LIGHTNING_LORA_REPO = "lightx2v/Qwen-Image-Lightning"
|
| 164 |
LIGHTNING_LORA_WEIGHT = "Qwen-Image-Lightning-8steps-V1.0.safetensors"
|
| 165 |
|
| 166 |
+
MAX_SEED = 2**32 - 1
|
| 167 |
|
| 168 |
+
class calculateDuration:
|
| 169 |
+
def __init__(self, activity_name=""):
|
| 170 |
+
self.activity_name = activity_name
|
| 171 |
|
| 172 |
def __enter__(self):
|
| 173 |
self.start_time = time.time()
|
|
|
|
| 176 |
def __exit__(self, exc_type, exc_value, traceback):
|
| 177 |
self.end_time = time.time()
|
| 178 |
self.elapsed_time = self.end_time - self.start_time
|
| 179 |
+
if self.activity_name:
|
| 180 |
+
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
|
| 181 |
else:
|
| 182 |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
| 183 |
|
|
|
|
| 230 |
return gr.update(value="Base mode selected - 48 steps for best quality"), 48, 4.0
|
| 231 |
|
| 232 |
@spaces.GPU(duration=100)
|
| 233 |
+
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, negative_prompt=""):
|
| 234 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 235 |
pipe.to("cuda")
|
| 236 |
+
|
| 237 |
+
batch_size = 1
|
| 238 |
+
prompt = prompt_mash
|
| 239 |
+
do_classifier_free_guidance = cfg_scale > 1.0
|
| 240 |
+
prompt_embeds, pooled_prompt_embeds = pipe.encode_prompt(
|
| 241 |
+
prompt,
|
| 242 |
+
num_images_per_prompt=1,
|
| 243 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 244 |
+
prompt_2=None,
|
| 245 |
+
max_sequence_length=256,
|
| 246 |
+
)
|
| 247 |
+
height, width = height - height % 16, width - width % 16
|
| 248 |
+
latents = pipe.prepare_latents(
|
| 249 |
+
batch_size,
|
| 250 |
+
pipe.transformer.config.in_channels,
|
| 251 |
+
height,
|
| 252 |
+
width,
|
| 253 |
+
dtype,
|
| 254 |
+
device,
|
| 255 |
+
generator,
|
| 256 |
+
latents=None,
|
| 257 |
+
)
|
| 258 |
+
pipe.scheduler.set_timesteps(steps)
|
| 259 |
+
timesteps = pipe.scheduler.timesteps
|
| 260 |
+
joint_attention_kwargs = {"scale": lora_scale}
|
| 261 |
+
for i in range(steps):
|
| 262 |
+
t = pipe.scheduler.sigmas[i]
|
| 263 |
+
latent_model_input = latents
|
| 264 |
+
with torch.no_grad():
|
| 265 |
+
noise_pred = pipe.transformer(
|
| 266 |
+
hidden_states=latent_model_input,
|
| 267 |
+
timestep=t,
|
| 268 |
+
guidance=cfg_scale,
|
| 269 |
+
pooled_projections=pooled_prompt_embeds,
|
| 270 |
+
encoder_hidden_states=prompt_embeds,
|
| 271 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 272 |
+
return_dict=False,
|
| 273 |
+
)[0]
|
| 274 |
+
latents = pipe.scheduler.step(
|
| 275 |
+
model_output=noise_pred,
|
| 276 |
+
timestep=t,
|
| 277 |
+
sample=latent_model_input,
|
| 278 |
+
return_dict=False,
|
| 279 |
+
)[0]
|
| 280 |
+
# preview
|
| 281 |
+
with torch.no_grad():
|
| 282 |
+
decoded = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0]
|
| 283 |
+
image = pipe.image_processor.pt_to_pil(decoded)[0]
|
| 284 |
+
yield image
|
| 285 |
+
# final
|
| 286 |
+
with torch.no_grad():
|
| 287 |
+
decoded = good_vae.decode(latents / good_vae.config.scaling_factor, return_dict=False)[0]
|
| 288 |
+
image = pipe.image_processor.pt_to_pil(decoded)[0]
|
| 289 |
+
yield image
|
| 290 |
+
|
| 291 |
+
@spaces.GPU(duration=100)
|
| 292 |
+
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed):
|
| 293 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 294 |
+
pipe_i2i.to("cuda")
|
| 295 |
+
image_input = load_image(image_input_path)
|
| 296 |
+
final_image = pipe_i2i(
|
| 297 |
+
prompt=prompt_mash,
|
| 298 |
+
image=image_input,
|
| 299 |
+
strength=image_strength,
|
| 300 |
+
num_inference_steps=steps,
|
| 301 |
+
guidance_scale=cfg_scale,
|
| 302 |
+
width=width,
|
| 303 |
+
height=height,
|
| 304 |
+
generator=generator,
|
| 305 |
+
joint_attention_kwargs={"scale": lora_scale},
|
| 306 |
+
output_type="pil",
|
| 307 |
+
).images[0]
|
| 308 |
+
return final_image
|
| 309 |
|
| 310 |
@spaces.GPU(duration=100)
|
| 311 |
+
def process_adapter_generation(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, image_input, image_strength, negative_prompt="", progress=gr.Progress(track_tqdm=True)):
|
| 312 |
if selected_index is None:
|
| 313 |
raise gr.Error("You must select a LoRA before proceeding.")
|
| 314 |
|
|
|
|
| 329 |
prompt_mash = prompt
|
| 330 |
|
| 331 |
# Always unload any existing LoRAs first to avoid conflicts
|
| 332 |
+
with calculateDuration("Unloading existing LoRAs"):
|
| 333 |
pipe.unload_lora_weights()
|
| 334 |
+
pipe_i2i.unload_lora_weights()
|
| 335 |
+
|
| 336 |
+
pipe_to_use = pipe_i2i if image_input is not None else pipe
|
| 337 |
|
|
|
|
| 338 |
if speed_mode == "Fast (8 steps)":
|
| 339 |
+
with calculateDuration("Loading Lightning LoRA and style LoRA"):
|
| 340 |
# Load Lightning LoRA first
|
| 341 |
+
pipe_to_use.load_lora_weights(
|
| 342 |
LIGHTNING_LORA_REPO,
|
| 343 |
weight_name=LIGHTNING_LORA_WEIGHT,
|
| 344 |
adapter_name="lightning"
|
|
|
|
| 346 |
|
| 347 |
# Load the selected style LoRA
|
| 348 |
weight_name = selected_lora.get("weights", None)
|
| 349 |
+
pipe_to_use.load_lora_weights(
|
| 350 |
lora_path,
|
| 351 |
weight_name=weight_name,
|
| 352 |
low_cpu_mem_usage=True,
|
|
|
|
| 354 |
)
|
| 355 |
|
| 356 |
# Set both adapters active with their weights
|
| 357 |
+
pipe_to_use.set_adapters(["lightning", "style"], adapter_weights=[1.0, lora_scale])
|
| 358 |
else:
|
| 359 |
# Quality mode - only load the style LoRA
|
| 360 |
+
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
| 361 |
weight_name = selected_lora.get("weights", None)
|
| 362 |
+
pipe_to_use.load_lora_weights(
|
| 363 |
lora_path,
|
| 364 |
weight_name=weight_name,
|
| 365 |
low_cpu_mem_usage=True
|
| 366 |
)
|
| 367 |
|
| 368 |
# Set random seed for reproducibility
|
| 369 |
+
with calculateDuration("Randomizing seed"):
|
| 370 |
if randomize_seed:
|
| 371 |
seed = random.randint(0, MAX_SEED)
|
| 372 |
|
| 373 |
# Get image dimensions from aspect ratio
|
| 374 |
width, height = compute_image_dimensions(aspect_ratio)
|
| 375 |
|
| 376 |
+
if image_input is not None:
|
| 377 |
+
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed)
|
| 378 |
+
yield final_image, seed, gr.update(visible=False)
|
| 379 |
+
else:
|
| 380 |
+
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, negative_prompt)
|
| 381 |
|
| 382 |
+
step_counter = 0
|
| 383 |
+
for image in image_generator:
|
| 384 |
+
step_counter += 1
|
| 385 |
+
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
| 386 |
+
yield image, seed, gr.update(value=progress_bar, visible=True)
|
| 387 |
|
| 388 |
def fetch_hf_adapter_files(link):
|
| 389 |
split_link = link.split("/")
|
|
|
|
| 507 |
def discard_custom_adapter():
|
| 508 |
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
| 509 |
|
|
|
|
|
|
|
| 510 |
css = '''
|
| 511 |
#gen_btn{height: 100%}
|
| 512 |
#gen_column{align-self: stretch}
|
|
|
|
| 519 |
.card_internal img{margin-right: 1em}
|
| 520 |
.styler{--form-gap-width: 0px !important}
|
| 521 |
#speed_status{padding: .5em; border-radius: 5px; margin: 1em 0}
|
| 522 |
+
#progress{height:30px}
|
| 523 |
+
#progress .generating{display:none}
|
| 524 |
+
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
|
| 525 |
+
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
|
| 526 |
'''
|
| 527 |
|
| 528 |
with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120)) as app:
|
|
|
|
| 554 |
|
| 555 |
with gr.Column():
|
| 556 |
result = gr.Image(label="Generated Image")
|
| 557 |
+
progress_html = gr.HTML(visible=False, elem_id="progress")
|
| 558 |
|
| 559 |
with gr.Row():
|
| 560 |
aspect_ratio = gr.Dropdown(
|
|
|
|
| 596 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 597 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
| 598 |
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.01, value=1.0)
|
| 599 |
+
|
| 600 |
+
with gr.Row():
|
| 601 |
+
image_input = gr.Image(label="Input Image for Image2Image", type="filepath")
|
| 602 |
+
image_strength = gr.Slider(label="Image Strength", minimum=0, maximum=1, step=0.01, value=0.35)
|
| 603 |
|
| 604 |
# Event handlers
|
| 605 |
gallery.select(
|
|
|
|
| 628 |
gr.on(
|
| 629 |
triggers=[generate_button.click, prompt.submit],
|
| 630 |
fn=process_adapter_generation,
|
| 631 |
+
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, image_input, image_strength],
|
| 632 |
+
outputs=[result, seed, progress_html]
|
| 633 |
)
|
| 634 |
|
| 635 |
app.queue()
|